
CISPA Helmholtz-Zentrum i.G.

Inputs from Hell
Generating Uncommon Inputs from Common Samples

Esteban Pavese1, Ezekiel Soremekun2, Nikolas Havrikov2, Lars Grunske1, and Andreas Zeller2

1 Humboldt-Universität zu Berlin, Berlin, Germany
{pavesees, grunske}@informatik.hu-berlin.de

2 CISPA / Saarland University, Saarbrücken, Germany
{ezekiel.soremekun, nikolas.havrikov, zeller}@cispa.saarland

ar
X

iv
:1

81
2.

07
52

5v
2

 [
cs

.S
E

]
 1

9
D

ec
 2

01
8

Inputs from Hell
Generating Uncommon Inputs from Common Samples

Esteban Pavese1, Ezekiel Soremekun2, Nikolas Havrikov2, Lars Grunske1, and Andreas Zeller2
1 Humboldt-Universität zu Berlin, Berlin, Germany

{pavesees, grunske}@informatik.hu-berlin.de
2 CISPA / Saarland University, Saarbrücken, Germany

{ezekiel.soremekun, nikolas.havrikov, zeller}@cispa.saarland

(Dated December 20, 2018)

Abstract Generating structured input files to test programs can be performed by techniques that produce them from a
grammar that serves as the specification for syntactically correct input files. Two interesting scenarios then arise for effective
testing. In the first scenario, software engineers would like to generate inputs that are as similar as possible to the inputs in
common usage of the program, to test the reliability of the program. More interesting is the second scenario where inputs
should be as dissimilar as possible from normal usage. This is useful for robustness testing and exploring yet uncovered
behavior. To provide test cases for both scenarios, we leverage a context-free grammar to parse a set of sample input files that
represent the program’s common usage, and determine probabilities for individual grammar production as they occur during
parsing the inputs. Replicating these probabilities during grammar-based test input generation, we obtain inputs that are close
to the samples. Inverting these probabilities yields inputs that are strongly dissimilar to common inputs, yet still valid with
respect to the grammar. Our evaluation on three common input formats (JSON, JavaScript, CSS) shows the effectiveness of
these approaches in obtaining instances from both sets of inputs.

1 Introduction

During the process of software testing, software engineers
typically look at satisfying two goals. First, ensuring that
the software works well on common inputs, such that the
software delivers its promise on the vast majority of cases
(and for the vast majority of customers) that will be seen
in typical operation. This is usually achieved by having a
set of tests (manually written or generated) that covers this
common behavior. Besides these common inputs, though, it
is also advisable to test for uncommon inputs. The rationale
for this is that such inputs would exercise code that is less
frequently used in production, possibly less tested, and
possibly less well understood [9].

The question that then arises is, how can engineers ob-
tain such uncommon inputs? In this paper, we focus on the
problem of generating uncommon (but otherwise syntacti-
cally correct and perfectly legal) inputs that are unlikely to
be seen in typical operation. To this end, we assume the
existence of a context-free grammar that describes the input
language to a program, that is, it describes the set of its
valid inputs. Using such a grammar, we can parse existing
common input samples and count how frequently specific
elements occur in these samples. Armed with these num-
bers, we can enrich the grammar to become a probabilistic
grammar, in which choices present in productions carry
different likelihoods. Since these probabilities come from
the common samples used for the quantification, this gram-
mar describes the distribution of valid, but common inputs.
The key idea is that now we can invert these probabilities
in order to obtain a second probabilistic grammar. This in-

verted grammar, however, describes in turn the distribution
of legal, but uncommon inputs. We call them “inputs from
hell”.

As an example of such “inputs from hell”, consider Fig-
ure 1, listing two JavaScript inputs generated by focusing
on uncommon features. Both of these snippets are valid
JavaScript code, but cause the Mozilla Rhino JavaScript
compiler to crash during interpretation. They make use
of so-called destructuring assignments: in JavaScript, it is
allowed to have several variables on the left hand side of
an assignment or initialization. In such a case, each gets
assigned a part of the structure on the right hand side, as in

1 var [one , two , t h r e e] = [1 , 2 , 3] ;

where the variable one is assigned a value of 1, two a
value of 2, and so on. Such destructuring assignments,
although useful in some contexts, are not extensively found
across JavaScript samples and tests.This is precisely why
the aim of our approach is to generate these “inputs from
hell”.

1 c o n s t [c , y , y] = [] ;
2 var { a : {} = ’b’ } = { } ;

Figure 1: Two inputs from hell that break Rhino 1.7.7.2

This paper makes the following contributions:

1. We show how to use context-free grammars to deter-
mine production probabilities from a given set of input
samples.

1

2. We show how to use mined probabilities to produce
inputs that are similar to a set of given samples. This
is useful for thoroughly testing commonly used fea-
tures (regression testing), or to test the surroundings of
previously failure-inducing inputs. As a result our ap-
proach leverages the well-known concept of probabilis-
tic grammars for both mining and test case generation.
In our evaluation using the JSON, CSS and JavaScript
formats, we show that our approach repeatedly covers
the same code as the original sample inputs.

3. We show how to use mined probabilities to produce
inputs that are markedly dissimilar to a set of given
samples, yet still valid according to the grammar. This
is useful for robustness testing, as well as for exploring
program behavior not triggered by the sample inputs.
We are not aware of any other technique that achieves
this objective. In our evaluation using the same sub-
jects, we show that our approach is successful in re-
peatedly covering code not covered in the original
samples.

2 Inputs from Hell in a Nutshell
To demonstrate how we produce both common and uncom-
mon inputs, let us illustrate our approach using a simple
example grammar. Let us assume we have a program P
that processes arithmetic expressions; its inputs follow the
standard syntax given by the grammar G below.

Expr → Term | Expr "+" Term | Expr "-" Term;
Term → Factor | Term "*" Factor

| Term "/" Factor;
Factor → Int | "+" Factor

| "-" Factor | "(" Expr ")";
Int → Digit Int | Digit;
Digit → "0" | "1" | "2" | "3" | ... | "9";

Let us further assume we have discovered a bug in P :
the input I = 1 * (2 + 3) is not evaluated properly.
We have fixed the bug in P , but want to ensure that similar
inputs would also be handled in a proper manner.

To obtain inputs similar to I , we first use the grammar G
to parse I and determine the distribution of the individual
choices in productions. This makes G a probabilistic gram-
mar Gp in which the productions’ choices are tagged with
their probabilities. For the input I above, for instance, we
obtain the probabilistic rule

Digit → 0% "0" | 33.3% "1" | 33.3% "2"
| 33.3% "3" | 0% "4" | 0% "5"
| 0% "6" | 0% "7" | 0% "8" | 0% "9";

which indicates the distribution of digits in I . Using
this rule for production, we would obtain ones, twos, and
threes at equal probabilities, but none of the other digits.
Figure 3 shows the grammar Gp as extension of G with
all probabilities as extracted from the derivation tree of I
(Figure 2). In this derivation tree we see, for instance, that
the nonterminal Factor occurs 4 times in total. 75% of
the time it produces integers (Int), while in the remaining
25% it produces a parenthesis expression ("(" Expr ")").

Expressions using unary operators like "+" Factor and
"-" Factor do not occur.

Expr

Term

Factor

")"Expr

Term

Factor

Int

Digit

"3"

"*"Term

Factor

Int

Digit

"2"

"("

"+"Expr

Term

Factor

Int

Digit

"1"

Figure 2: Derivation tree representing "1 + (2 * 3)"

If we use Gp from Figure 3 as a probabilistic production
grammar, we obtain inputs according to these probabilities.
As listed in Figure 4, these inputs uniquely consist of the
digits and operators seen in our sample 1 * (2 + 3).
All of these inputs are likely to cover the same code in P as
the original sample input, yet with different input structures
that trigger the same functionality in P in several new ways.

Expr → 66.7% Term | 33.3% Expr "+" Term
| 0% Expr "-" Term;

Term → 75% Factor | 25% Term "*" Factor
| 0% Term "/" Factor;

Factor → 75% Int | 0% "+" Factor
| 0% "-" Factor | 25% "(" Expr ")";

Int → 0% Digit Int | 100% Digit;
Digit → 0% "0" | 33.3% "1" | 33.3% "2"

| 33.3% "3" | 0% "4" | 0% "5"
| 0% "6" | 0% "7" | 0% "8" | 0% "9";

Figure 3: Probabilistic grammar Gp, expanding G

(2 * 3)
2 + 2 + 1 * (1) + 2
((3 * 3))
3 * (((3 + 3 + 3) * (2 * 3 + 3))) * (3)
3 * 3
3 * 1 * 3
((3) + 2 + 2 * 1) * (1)
1
((2)) + 3

Figure 4: Inputs generated from Gp in Figure 3

Replicating “more of the same” features as found in
sample inputs makes most sense if these studied inputs
can be associated with errors. However if we, as in most
cases, only have sample inputs that work just fine, we would
typically be interested in inputs that are different from our
samples. We can easily obtain such inputs by inverting the
mined probabilities: if a rule previously had a weight of p,

2

we now assign it a weight of 1/p, normalized across all
production alternatives. For our Digit rule, this gives the
digits not seen so far a weight of 1/0 = ∞, which is still
distributed equally across all seven alternatives, yielding
individual probabilities of 1/7 = 14.3%. Proportionally,
the weights for the digits already seen in I are infinitely
small, yielding a probability of effectively zero. The thus
“inverted” rule reads now:

Digit → 14.3% "0" | 0% "1" | 0% "2" | 0% "3"
| 14.3% "4" | 14.3% "5" | 14.3% "6"
| 14.3% "7" | 14.3% "8" | 14.3% "9";

Applying this inversion to rules with non-terminal sym-
bols is equally straightforward. The resulting probabilistic
grammar Gp−1 is given in Figure 5.

Expr → 0% Term | 0% Expr "+" Term
| 100% Expr "-" Term;

Term → 0% Factor | 0% Term "*" Factor
| 100% Term "/" Factor;

Factor → 0% Int | 50% "+" Factor
| 50% "-" Factor | 0% "(" Expr ")";

Int → 100% Digit Int | 0% Digit;
Digit → 14.3% "0" | 0% "1" | 0% "2" | 0% "3"

| 14.3% "4" | 14.3% "5" | 14.3% "6"
| 14.3% "7" | 14.3% "8" | 14.3% "9";

Figure 5: Grammar Gp−1 inverted from Gp in Figure 3

This inversion can lead to infinite derivations, for ex-
ample, the production rule in Gp−1 for generating Expr is
recursive 100% of the time, expanding only to Expr "-"
Term, without chance of hitting the base case. As a result,
we take special measures to avoid such infinite productions
during input generation, which we will detail further on.

If we use Gp−1 as a production grammar—and avoiding
infinite production—we obtain inputs as shown in Figure 6.
These inputs now focus on operators like subtraction or
division or unary operators not seen in our input samples.
Likewise, the newly generated digits cover the complement
of those digits previously seen. Yet, all inputs are syntac-
tically valid according to the grammar. With both the sets
of similar and dissimilar inputs, we can expect to have a
good set of regression tests as well as a set exploiting less
frequently used functionality.

+5 / -5 / 7 - +0 / 6 / 6 - 6 / 8 - 5 - 4
-4 / +7 / 5 - 4 / 7 / 4 - 6 / 0 - 5 - 0
+5 / ++4 / 4 - 8 / 8 - 4 / 8 / 7 - 8 - 9
-6 / 9 / 5 / 8 - +7 / -9 / 6 - 4 - 4 - 6
+8 / ++8 / 5 / 4 / 0 - 5 - 4 / 8 - 8 - 8
-9 / -5 / 9 / 4 - -9 / 0 / 5 - 8 / 4 - 6
++7 / 9 / 5 - +8 / +9 / 7 / 7 - 6 - 8 - 4
-+6 / -8 / 9 / 6 - 5 / 0 - 5 - 8 - 0 - 5

Figure 6: Inputs generated from Gp−1 from Figure 5

3 Approach
In order to explain our approach in detail, we start with
introducing basic notions of probabilistic grammars.

3.1 Probabilistic Grammars

The probabilistic grammars that we employ in this pa-
per are based on the well-known context-free grammars
(CFGs) [26].

Definition 1 (Context-free grammar). A context-free gram-
mar is a 4-tuple (V, T, P, S0), where V is the set of non-
terminal symbols, T the terminals, P : V → (V ∪ T)∗ the
set of productions, and S0 ∈ V the start symbol.

In a non-probabilistic grammar, rules for a non-terminal
symbol S provide n alternatives Ai for expansion:

S → A1 | A2 | . . . | An (1)

In a probabilistic grammar, each of the alternatives Ai

in Equation (1) is augmented with a probability pi, where∑n
i=1 pi = 1 holds:

S → p1 A1 | p2 A2 | . . . | pn An (2)

If we are using these grammars for generation of a sen-
tence of the language described by the grammar, each al-
ternative Ai has a probability of pi to be selected when
expanding S.

By convention, if one or more pi are not specified in a
rule, we assume that their value is the complement prob-
ability, distributed equally over all alternatives with these
unspecified probabilities. Consider the rule

Letter → 40.0% "a" | "b" | "c"

Here, the probabilities for "b" and "c" are not specified;
we assume that the complement from "a", namely 60%, is
equally distributed over them, yielding effectively

Letter → 40.0% "a" | 30.0% "b" | 30.0% "c"

Formally, to assign a probability to an unspecified pi, we
use

pi =
1−

∑
{pj |pj is specified for Aj}

number of alternatives Ak with unspecified pk
(3)

Again, this causes the invariant
∑n

i=1 pi = 1 to hold. If
no pi is specified for a rule with n alternatives, as in Equa-
tion (1), then Equation (3) makes each pi = 1/n, as in-
tended.

3.2 Learning Probabilities

Our aim now is to turn a classical context-free grammar G
into a probabilistic grammar Gp capturing the probabilities
from a set of samples. That is, to determine the necessary pi
values as defined in Equation (2) from these samples. This is
achieved by counting how frequently individual alternatives
occur during parsing in each production context, and then
to determine appropriate probabilities.

In language theory, the result of parsing a sample input I
using G is a derivation tree [1], representing the structure

3

of a sentence according to G. As an example, consider Fig-
ure 2, representing the input "1 + (2 * 3)" according
to the example arithmetic expression grammar in Section 2.
In this derivation tree, we can now count how frequently
a particular alternative Ai was chosen in the grammar G
during parsing. In Figure 2, the rule for Expr is invoked
three times during parsing. This rule expands once (33.3%)
into Expr "+" Term (at the root); and twice (66.7%) into
Term in the subtrees. Likewise, the Term symbol expands
once (25%) into Term "*" Factor and three times (75%)
into Factor.

Formally, given a set T of derivation trees from a gram-
mar G applied on sample inputs, we determine the probabil-
ities pi for each alternative Ai of a symbol S → A1 | . . . |An

as

pi =
Expansions of S → Ai in T

Expansions of S in T
(4)

If a symbol S does not occur in T , then Equation (4) makes
pi = 0/0 for all alternatives Ai; in this case, we treat all pi
for S as unspecified, assigning them a value of pi = 1/n in
line with Equation (3).

In our example, Equation (4) yields the probabilistic
grammar Gp in Figure 3, assigning probabilities to all alter-
natives.

3.3 Inverting Probabilities

We turn our attention now to the converse approach; namely
producing inputs that deviate from the sample inputs that
were used to learn the probabilities described above. This
“less of the same” approach promises to be useful if we
accept that our samples are not able to cover all the pos-
sible behavior of the system under test, and if we want to
find bugs in behaviors that are either not exercised by our
samples, or do so rarely.

The key idea is to invert the probability distributions as
learned from the samples, such that the input generation
focuses on the complement section of the language (w.r.t.
the samples and those inputs generated by the probabilistic
grammar). If some symbol occurs frequently in the parse
trees corresponding to the samples, this approach should
generate the symbol less frequently, and vice versa: if the
symbol seldom occurs, then the approach should definitely
generate it often.

For a moment, let us ignore probabilities and focus on
weights instead. That is, the absolute (rather than relative)
number of occurrences of a symbol in the parse tree of a
sample. We start by determining the occurrences of a sym-
bol A during a production S found in a derivation tree T :

wA,S =
Occurrence count of A in the
expansions of symbol S in T

(5)

To obtain inverted weights w′A,S , a simple way is to make
each w′A,S based on the reciprocal value of wA,S , that is

w′A,S = wA,S
−1 =

1

wA,S
(6)

If the set of samples is small enough, or focuses only on
a section of the language of the grammar, it might be the

case that some production or symbol never appears in the
parsing trees. If this is the case, then the previous equations
end up yielding wA,S = 0. We can compute wA,S

−1 =∞,
assigning the elements not seen an infinite weight. Conse-
quently, all symbols B that were indeed seen before (with
wB,S > 0) are assigned an infinitesimally small weight,
leading to w′B,S = 0. The remaining infinite weight is then
distributed over all of the originally “unseen” elements with
original weight wA,S = 0. Recall the arithmetic expres-
sion grammar in Section 2; such a situation arises when we
consider the rule for the symbol Digit: the inverted proba-
bilities for the rule focus exclusively on the complement of
the digits seen in the sample.

All that remains in order to obtain actual probabilities
is to normalize the weights back into a probability mea-
sure, ensuring for each production rule that its invariant∑n

i=1 p
′
i = 1 holds:

p′i =
w′i∑n
i=1 w

′
i

(7)

3.4 Producing Inputs from a Grammar

Given a probabilistic grammar Gp for some language (ir-
respective of whether it was obtained by learning from
samples, by inverting, or simply written that way in the
first place), our next step in the approach is to generate
inputs following the specified productions. This generation
process is actually very simple, since it reduces to produce
instances by traversing the grammar, as if it were a Markov
chain. However, this generation runs the serious risk of
probabilistically choosing productions that lead to an exces-
sively large parsing tree. Even worse, the risk of generating
an unbounded tree is very real, as can be seen in the rule
for the symbol Int in the arithmetic expression grammar
in Section 2. The production rule for said symbol triggers,
with probability 1.0, a recursion with no base case, and will
never terminate.

Our inspiration for constraining the growth of the tree dur-
ing input generation comes from the PTC2 algorithm [37].
The main idea of this algorithm is to allow the expansion
of not-yet-expanded productions, but all the while ensuring
that the number of productions does not exceed a certain
threshold of performed expansions. This threshold would
be set as parameter of the input generation process. Once
this threshold is exceeded, the partially generated instance
cannot be truncated, as that would result in an illegal input.
Alternatively, we choose to allow further expansion of the
necessary non-terminal symbols. However, from this point
on, expansions are not chosen probabilistically. Rather, the
choice is constrained to those expansions that generate the
shortest possible expansion tree. This ensures both termina-
tion of the generation procedure, as well as trying to keep
the input size close to the threshold parameter. This choice,
however, does introduce a bias that may constitute a threat
to the validity of our experiments. We discuss this issue
later in Section 4.

4

Grammar for
target language

Grammar for
ANTLR

grammars

Counting
grammar for

target language

Language input
samples

Probabilistic
grammar for

target language

Grammar to
Instance

generation
tool

Random
generated

inputs

Probabilistic
generated

inputs

Inverse
probabilistic
generated

inputs

Application
under test

Figure 7: Workflow for the generation of more of the same and less of the same.

3.5 Implementation

As a prerequisite for carrying out our approach, we only
assume we have the context-free grammar of the language
available for which we are interested in generating inputs,
and a collection (no matter the size) of inputs that we will
assume are common inputs. Armed with these elements, we
perform the workflow detailed in Figure 7.

The first step of the approach is to obtain a counting gram-
mar from the original grammar. This counting grammar is,
from the parsing point of view, completely equivalent to the
original grammar. However, it is augmented with actions
during parsing which perform all necessary counting of
symbol occurrences parallel to the parsing phase. Finally, it
outputs the probabilistic grammar. Note that this first phase
requires not only the grammar of the target language, but
also the grammar of the language in which the grammar it-
self is written. That is, generating the probabilistic grammar
not only requires parsing sample inputs, but also the gram-
mar itself. In the particular case of our implementation, we
make use of the well-known parser generator ANTLR [45].

Once the probabilistic grammar is obtained, we derive
the probabilistically-inverted grammar as described in this
section. Armed with both probabilistically annotated gram-
mars, we can continue with the input generation procedure.

4 Experimental Evaluation
In this section we evaluate our approach by applying the
technique to several case studies. In particular, we ask the
following research questions:

(RQ1) Can a learned grammar be used to generate
inputs that resemble those that were employed during
the grammar training? (“more of the same”)

(RQ2) Can a learned grammar be modified so it can
generate inputs that, opposed to (RQ1), are in contrast
to those employed during the grammar training? (“less
of the same”)

To answer the first two questions, we need to compare
inputs in order to decide whether these inputs are “similar”
or “contrasting”. In the scope of this evaluation, we will use
the method call frequency as a measure of input similarity.
We will define this measure later in this section, and we will

discuss its usefulness, as well as alternatives to it, when we
discuss the threats to the validity of our validation approach.

4.1 Evaluation Setup

4.1.1 Generated Inputs

Once a probabilistic grammar is learned from the training
instances, we generate several inputs that are fed to each
subject. Our evaluation involves the generation of two types
of test suites:

a) Probabilistic - choice between productions is governed
by the distribution specified by the learned probabili-
ties in the grammar.

b) Inverse - choice is governed by the distribution ob-
tained as a result of the inversion process described in
Section 3.

Expansion size control is carried out in order to avoid un-
bounded expansion as described in Section 3.

4.1.2 Research Protocol

In our evaluation, we generate test suites and measure the
frequency of method calls they induce in our subject pro-
grams. We use the HPROF [42] profiler to accurately mon-
itor the number of method calls for each input, since all
subjects are implemented in Java. For each input language,
the experimental protocol proceeds as follows:

a) We randomly select five files from a pool of thousands
of sample files crawled from GitHub code reposito-
ries, and through our approach produce a probabilistic
grammar out of them.

b) We feed the sampled input files into the subject pro-
gram and record the frequency of method calls using
HPROF [42].

c) Using the probabilistic grammar, we generate test
suites, each one containing 100 input files.We gen-
erate a total of 1000 test suites, in order to control for
variance in the input files. Overall, each experiment
contains 100,000 input files (100 files x 1,000 runs).
We perform this step for both probabilistic and inverse
generations. Hence, the total number of inputs gener-
ated for each grammar is 200,000 (1,000 suites of 100
inputs each, a set of suites for each experiment).

5

d) We test each subject program, by feeding the input files
into the subject program and recording the frequency
of method calls using HPROF [42].

All experiments were conducted on a shared server with 64
cores and 126 GB of RAM; more specifically an Intel(R)
Xeon(R) CPU E5-2683 v4 @ 2.10GHz with 64 virtual cores
(Intel Hyperthreading), running Debian 9.5 Linux.

4.1.3 Subject Programs

In order to validate our approach, we evaluated the tech-
nique by generating inputs and feeding them to a variety of
Java applications. All these applications are open source
programs using three different input formats, namely JSON,
JavaScript and CSS3. Table 1 summarizes the subjects to
be analyzed, their input format and the number of methods
in each implementation.

Subject # of methods Input language
Argo 523

JSON

Genson 1182
Gson 793

JSONJava 202
Jackson 5378

JsonToJava 294
MinimalJson 224

Pojo 445
json-simple 63

Rhino 4873 JavaScript
cssValidator 7774 CSS3

Table 1: Subjects and input language for approach valida-
tion.

The initial, unquantified grammars for the input subjects
were adapted from those in the repository of the well-known
parser generator ANTLR [45]1. Training samples were
obtained by scraping GitHub repositories for the required
format files. The probabilistic grammars developed from
the original ones, as well as the obtained training samples
can be found in the artefact package submitted along this
paper.

4.1.4 Measuring (dis)similarity

Questions (RQ1) and (RQ2) refer to a notion of similarity
between inputs. Although white-box approaches exist that
aim to measure test-case (dis)similarity [15, 51], applying
them to complex grammar-based inputs is not straightfor-
ward. However, in this paper, since we are dealing with
evaluating the behavior of a certain piece of software, it
makes sense to aim for a notion of semantic similarity. In
this sense, two inputs are semantically similar if they incite
similar behaviors in the software that processes them. In
order to achieve this, we define a measure of input simi-
larity in terms of their method call frequency. We will say
two inputs are similar if they trigger a similar distribution
in the frequency with which the methods of the piece of

1The original grammars can be found at https://github.com/
antlr/grammars-v4.

software under analysis are called. Of course, such a notion
allows for a great variance drift if we were to compare only
two inputs. Therefore, we perform this comparison on test
suites as a whole to dampen the effect of this variance.

Using this proxy measure of method call frequency, we
will aim at answering (RQ1) and (RQ2). The first question
will be answered satisfactorily if the distribution of call
frequencies when running the subjects on probabilistically
generated suites is similar to the frequency when running
the software on the training samples. Likewise, the second
question will be answered positively if the call frequency
distributions for suites generated with the inverse approach
are markedly different.

4.2 Experimental results

In the figures below ranging from Figure 8 to Figure 13,
we show a representative selection of our results2. In this
section, we describe the data depicted in these charts and
offer our interpretations.

For each subject, two charts are constructed. In both
charts, the horizontal axis (which is otherwise unlabelled)
represents the set of methods in the subject, ordered by
the frequency of calls in the experiment on probabilistic
inputs. The chart at the top represents the accumulated
call frequency for each strategy (calls in the samples, in
probabilistic inputs and inverse probabilistic inputs), as we
consider more and more methods. The chart at the bottom
represents the absolute call frequency for each method. In
each chart, the data series corresponding to the sample
runs is depicted in blue, the series corresponding to the
probabilistic runs in green, and the series for the inverse
probabilistic runs in orange.

4.2.1 Research Question 1

In order to argue for a positive answer for (RQ1), we need
to compare the statistical distributions resulting from our
strategies. Such a comparison is a notoriously difficult
problem, with the common advice being to run a visual
test [7]. We need to be able to see a pattern in frequency
calls such that the accumulated curves for the sample runs
and the probabilistic runs roughly match.3 It can be seen
that this match does hold in all JSON examples very closely,
and to a further extent also by the Rhino JS interpreter and
CSSValidator.

We also perform a statistical analysis on the distribu-
tions to increase the confidence in our conclusion. To this
end we aim at performing a distribution fitness test (KS -
Kolmogorov-Smirnov) on the sample vs. the probabilistic
call distribution; and on the sample vs. the inverse proba-
bilistic distribution. It must be noted that the KS test aims at
determining whether the distributions are exactly the same,

2The full range of charts is omitted for space reasons. However, all
charts, as well as the raw data, are available as part of the artifact package.
Moreover, the charts shown here have been selected so that they are
representative of the whole set; that is, the omitted charts do not deviate
significantly.

3Note that in every chart the curve for the probabilistic runs is always
smooth. This is a result of the sorting being done on the frequency of calls
on this variant.

6

https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4

whereas we want to ascertain if they are similar or dissimi-
lar. KS tests are very sensitive to small variations in data,
which makes it, in principle, inadequate for this objective.
In this work, we employ the approach used in [13]—we
first estimate the kernel density functions of the data distri-
butions, which smoothens the estimated distribution. Then,
we bootstrap and resample new data on the kernel density
estimates, and perform the KS test on the bootstrapped data.
Results are shown in Table 2, column (C). Results range
from strong (in blue) to inconclusive (in orange and red) on
relating the sample to the probabilistic data4.

In almost subjects, the “more of the same” method
call frequency distribution matches the distribution in

the sample. In the other cases, results are mostly
inconclusive.

In the cases of most discrepancy, they can be explained
looking at the absolute frequencies, looking for the spikes
that cause the curves to mismatch. In the case of the
Rhino JS interpreter, two spikes distinguish themselves
clearly, with frequencies hovering around 24% and 39%
of all calls—that is, they account for more than half of
the total method calls on the sample. In looking at the
data, it turns out that these spikes correspond to methods
org.mozilla.javascript.TokenStream.getChar

and org.mozilla.javascript.TokenStream.<init>.
This is explained by the fact that the samples have real-
world properties, such as sensibly-named (and therefore
longer) variables and methods, whereas our approach tends
to generate much shorter names. In the case of the CSSVal-
idator subject, the situation is similar. The frequency chart
shows three distinct spikes which correspond to methods
util.Utf8Properties.continueLine (8%), util.U
tf8Properties.loadConversion (19%) and
util.Ut

f8Properties.removeWhiteSpaces (23%), which
deal with utf-8 conversions. Again, the load on those
methods is larger, as names are longer in real-world
samples.

4.2.2 Research Question 2

In this case, we want to check if we see a markedly different
accumulated frequency between the samples and the inputs
generated by the inverse probabilistic approach. Again, it
can easily be seen that in almost all charts this is the case,
except for the CSSValidator subject.

With the exception of CSSValidator, the method call
frequency distribution of “less of the same” is

markedly different from the distribution in the sample.

Most intriguing for this subject is the fact that the curves
for the probabilistic and inverse-probabilistic generations

4In the case of the Jackson exemplars, frequencies for the sample calls
are all close to zero, which makes the data inadequate for the KS test.

Figure 8: Call frequency analysis for Gson

Figure 9: Call frequency analysis for JSONJava

7

Figure 10: Call frequency analysis for MinimalJson

Figure 11: Call frequency analysis for json-simple

Figure 12: Call frequency analysis for Rhino

Figure 13: Call frequency analysis for CSSValidator

8

Subject A B C D

Argo 10 +3.32% (0.37, 1.33e−6) (0.57, 4.41e−15)
Genson 24 +8.16% (0.13, 0.34) (0.51, 3.70e−12)
Gson 21 +6.14% (0.08, 0.89) (0.43, 9.12e−9)
JSONJava 6 +10.00% (0.15, 0.19) (0.61, 3.28e−17)
Jackson 20 +2.22% N/A N/A
JsonToJava 11 +12.09% (0.23, 8.21e−2) (0.59, 3.96e−16)
MinimalJson 25 +20.49% (0.36, 2.85e−6) (0.58, 1.34e−15)
Pojo 18 +8.78% (0.21, 0,02) (0.53, 4.26e−13)
json-simple 8 +30.77% (0.27, 1.03e−2) (0.58, 1.34e−15)
Rhino 13 +5.22% (0.70, 1.57e-22) (0.51, 3.69e−12)
cssValidator 17 +11.88% (0.49, 2.95e−11) (0.48, 8.08e−11)

Table 2: (A): number of methods called by the inverse
approach that are never called by the samples - (B): per-
centage increase of (A) w.r.t. sample - (C, D): smoothed
bootstrapped Kolmogorov-Smirnov tests for distributions
(C): sample vs. probabilistic; (D): sample vs. inverse (test
statistic, p-value).

fit each other almost perfectly. An in-depth analysis of the
learned probabilistic grammar, however, revealed that the
probabilistic grammar is almost uniform, which explains
why the inverted probabilistic grammar would look very
much alike. The results for (RQ1) and (RQ2) on this sub-
ject suggest that the approach does not work very well
when the samples induce an almost-uniform grammar; and
that, apparently, the original CSS grammar and real world
samples are such that they don’t allow for much variety,
therefore resulting in such an almost-uniform grammar.

A “less of the same” strategy works best if the element
distributions in the sample input is non-uniform.

Further evidence on the power of the “less of the same”
approach is shown in Table 2. Column (A) shows the abso-
lute number of methods that were frequently called in the
“less of the same” inputs that were not called at all in the
samples. Column (B) shows this data as a percentage of
the methods not covered in the sample. In column (D) we
perform the distribution fitting test between the sample call
distribution and the inverse probabilistic one. All results
show the distributions are markedly different with strong
statistical evidence.

4.3 Threats to Validity

Internal validity The main threat to internal validity is
the correctness of our implementation. Namely, whether our
implementation does indeed learn a probabilistic grammar
corresponding to the distribution of the real world samples
used as training set. Unfortunately, this problem is not a
simple one to resolve. The probabilistic grammar can be
seen as a Markov chain, and the aforementioned problem
is equivalent to verifying that its equilibrium distribution
corresponds to the posterior distribution of the real world
samples. The problem is two-fold: first, the number of
samples necessary in order to ascertain the posterior dis-
tribution is inordinate. Second, even if we had a chance
to process such a number of inputs, or if the posterior dis-
tribution were otherwise known, it might well be the case
that the probabilistic grammar actually has no equilibrium

distribution5. However, our tests on smaller and simpler
grammars suggest that this is not an issue.

A second internal validity threat is present in the tech-
nique we use for controlling the size of the generated sam-
ples. As described before, a sample’s size is defined in
terms of the number of expansions in its parsing tree. In
order to control the size, we keep track of the number of
expansions generated. Once this number crosses a certain
threshold (if it actually crosses it at all), all open derivations
are closed via their shortest path. This does introduce a bias
in the generation that does not exactly correspond to the
distribution described by the probabilistic grammar. The
effects of such a bias are difficult to determine, and merit
further and deeper study. However, not performing this
termination procedure would render useless any approach
based on probabilistic grammars.

External validity Threats to external validity relate to the
generalizability of the experimental results. In our case, this
is specifically related to the subjects used in the experiments.
We acknowledge that we have only experimented with a
limited number of input grammars. However, we have se-
lected the subjects with the intention to test our approach on
practically relevant input grammars with different complex-
ities, from small to medium size grammars like JSON; and
rather complex grammars like JavaScript and CSS. As a
result, we are confident that our approach will also work on
inputs that can be characterized by context-free grammars
with a wide range of complexity. However, we do have
evidence that the approach does not seem to be generaliz-
able to combinations of grammars and samples such that
they induce the learning of an almost-uniform probabilistic
grammar.

Construct validity The main threat to construct validity
is the metric we use to evaluate the similarity between test
suites, namely method call frequency. While the uses of cov-
erage metrics as adequacy criteria is extensively discussed
by the community [2, 4, 60], their binary nature (that is, we
can either report covered or not covered) makes them too
shallow to differentiate for behavior. The variance intrinsic
to the probabilistic generation makes it very likely that at
least one sample will cover parts of the code unrelated to
those covered by the rest of the suite. Indeed, we carried out
coverage-based experiments on our probabilistically and
inverse-probabilistically generated suites, and this metric
turned out to be inadequate, as we did not find significant
differences when looking at binary notions of coverage.

5 Related Work
Software Test Generation. The aim of software test gener-
ation is to find a sample of inputs that induce executions that
sufficiently cover the possible behaviors of the program—
including undesired behavior. Modern software test genera-
tion relies, as surveyed by Anand et al. [2] on symbolic code
analysis to solve the path conditions leading to uncovered
code [55, 5, 8, 9, 28, 33, 12, 53], search-based approaches

5A Markov chain with multiple bottom (isolated) connected compo-
nents will have no equilibrium distributions. It can be easily the case that
a grammar has such a multiplicity of connected components.

9

to systematically evolve a population of inputs towards the
desired goal [40, 16, 44, 39], random inputs to programs and
functions [43, 41] or a combination of these techniques [19,
50, 6, 48, 54]. Additionally, machine learning techniques
can also be applied to create test sequences [35, 52]. All
these approaches have in common that they do not require
an additional model or annotations to constrain the set of
generated inputs; this makes them very versatile, but brings
the risk of producing false alarms—failing executions that
cannot be obtained through legal inputs.

Grammar-Based Test Generation. The usage of gram-
mars as producers was introduced in 1970 by Hanford in his
syntax machine [23]. Such producers are mainly used for
testing compilers and interpreters: CSmith [58] produces
syntactically correct C programs, and LANGFUZZ [25]
uses a JavaScript grammar to parse, recombine, and mutate
existing inputs while maintaining most of the syntactic va-
lidity. GENA [22, 21] uses standard symbolic grammars to
produce test cases and only applies stochastic annotation
during the derivation process to distribute the test cases and
to limit recursions and derivation depth. Grammar-based
white-box fuzzing [18] combines grammar-based fuzzing
with symbolic testing and is now available as a service from
Microsoft. As these techniques operate with system inputs,
any failure reported is a true failure—there are no false
alarms. None of the above approaches use probabilistic
grammars, though.

Probabilistic Grammars. The foundations of proba-
bilistic grammars date back to the earliest works of Chom-
sky [11]. The concept has seen several interactions and
generalizations with physics and statistics; we recommend
the very nice article by Geman and Johnson [17] as an
introduction. Probabilistic grammars are frequently used
to analyze ambiguous data sequences—in computational
linguistics [38] to analyze natural language, and in bio-
chemistry [49] to model and parse macromolecules such
as DNA, RNA, or protein sequences. Probabilistic gram-
mars have been used also to model and produce input data
for specific domains, such as 3D scenes [36] or processor
instructions [10].

The usage of probabilistic grammars for test generation
seems rather straightforward, but is still uncommon. The
Geno test generator for .NET programs by Lämmel and
Schulte [32] allowed users to specify probabilities for in-
dividual production rules. This approach, in contrast to
the one we present in this paper, does not use existing
samples to learn or estimate probabilities. The test case gen-
eration [29, 30] and failure reproduction [31] approaches
by Kifetew et al. combine probabilistic grammars with
a search-based testing approach. The results [30] show
that the combination produces a large percentage of correct
inputs and, based on the fitness function, produces a high-
branch coverage. However, due to the search-based nature
of the approach, a large number of system evaluations to
determine the fitness of the generated test cases are required.
The approach by Poulding et al. [14, 47] uses a stochastic
context-free grammar for statistical testing. The goal of this
work is thus to correctly imitate the operational profile and

consequently the generated test cases are similar to what
one would expect during normal operation of the system.

Mining Probabilities. Related to our work are ap-
proaches that mine grammar rules and probabilities from
existing samples. Patra and Pradel [46] use a given parser
to mine probabilities for subsequent fuzz testing and to
reduce tree-based inputs for debugging [24]. Their aim,
however, is not to produce inputs that would be similar or
dissimilar to existing inputs, but rather to produce inputs
that have a higher likelihood to be syntactically correct.
This aim is also shared by two grammar mining approaches:
GLADE [3] and Learn&Fuzz [20], which learn produc-
ers from large sets of input samples even without a given
grammar.

All these approaches, however, share the problem of
producing only “more of the same”—they can only focus on
common features rather than uncommon features, creating
a general “tension between conflicting learning and fuzzing
goals” [20]. In contrast, our work can specifically focus
on uncommon inputs—that is, the complement of what has
been learned.

Like us, the Skyfire approach [56] aims at also leveraging
uncommon inputs for probabilistic fuzzing. Their idea is to
learn a probabilistic distribution from a set of samples and
use this distribution to generate seeds for a standard fuzzing
tool, namely AFL [59]. Here, favoring low probability rules
is one of many heuristics applied besides low frequency,
low complexity, or production limits. The tool requires,
however, the specification of a context-dependent grammar.
Although the tool has shown good results for XML-like
languages, results for other, general grammar formats such
as JavaScript are marked as “preliminary” only, though.

Mining Grammars. Our approach requires a grammar
that can be used both for parsing and producing inputs.
While engineering such a grammar may well pay off in
terms of better testing, it is still a significant investment in
the case of specific domain inputs where such a grammar
might not be immediately available. Mining input struc-
tures [34], as exemplified using the above GLADE [3] and
Learn&Fuzz [20] approaches, may assist in this task. The
AUTOGRAM approach by Höschele and Zeller [27] mines
human-readable input grammars exploiting structure and
identifiers of a program processing the input, which makes
it particularly promising.

6 Conclusions and Future Work
In this paper we have presented an approach that allows
engineers, using a grammar and a set of input samples, to
generate instances that are either similar or dissimilar to
these samples. Similar samples are useful, for instance,
when learning from failure-inducing inputs; while dissimi-
lar samples could be used to leverage the testing approach
to explore previously uncovered code. Our approach pro-
vides a simple, general, and cost-effective means to generate
test cases that can then be targeted to the commonly used
portions of the software, or to the rarely used features.

Despite their usefulness for test case generation,
grammars—including probabilistic grammars—still have a

10

lot of potential to explore in research, and a lot of ground
to cover in practice. Our future work will focus on the
following topics:

Deep models. At this point, our approach captures prob-
abilistic distributions only at the level of individual rules.
However, probabilistic distributions could also capture the
occurrence of elements in particular contexts, and differen-
tiate between them. For instance, if a "+" symbol rarely
occurs within parentheses, yet frequently outside of them,
this difference would, depending on how the grammar is
structured, not be caught by our approach. The domain of
computational linguistics [38] has introduced a number of
models that take context into account. In our future work,
we shall experiment with deeper context models, and deter-
mining their effect on capturing common and uncommon
input features.

Grammar learning. The big cost of our approach is
the necessity of a formal grammar for both parsing and
producing—a cost that can boil down to 1–2 programmer
days if a formal grammar is already part of the system (say,
as an input file for parser generators), but also extend to
weeks if it is not. In the future, we will be experimenting
with approaches that mine grammars from input samples
and programs [3, 20, 27, 34] with the goal of extending
the resulting grammars with probabilities for probabilistic
fuzzing.

Debugging. Mined probabilistic grammars could be
used to characterize the features of failure-inducing inputs,
separating them from those of passing inputs. Statistical
fault localization techniques [57], for instance, could then
identify input elements most likely associated with a failure.
Generating “more of the same” inputs, as in this paper, and
testing whether they cause failures, could further strengthen
correlations between input patterns and failures, as well
as narrow down the circumstances under which the failure
occurs.

We are committed to making our research accessible for
replication and extension. The source code of our parsers
and production tools, the raw input samples, as well as all
raw obtained data and processed charts is available as a
replication package:

https://tinyurl.com/inputs-from-hell

References
[1] Alfred V. Aho et al. Compilers: Principles, Tech-

niques, and Tools (2Nd Edition). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.,
2006.

[2] Saswat Anand et al. “An orchestrated survey of
methodologies for automated software test case gen-
eration”. In: Journal of Systems and Software 86.8
(2013), pp. 1978–2001.

[3] Osbert Bastani et al. “Synthesizing Program Input
Grammars”. In: Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation. PLDI 2017. Barcelona,
Spain: ACM, 2017, pp. 95–110.

[4] Antonia Bertolino. “Software Testing Research:
Achievements, Challenges, Dreams”. In: Interna-
tional Conference on Software Engineering, ISCE
2007, Workshop on the Future of Software Engineer-
ing, FOSE 2007, May 23-25, 2007, Minneapolis, MN,
USA. Ed. by Lionel C. Briand and Alexander L. Wolf.
IEEE Computer Society, 2007, pp. 85–103.

[5] Marcel Böhme et al. “Directed Greybox Fuzzing”. In:
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03,
2017. Ed. by Bhavani M. Thuraisingham et al. ACM,
2017, pp. 2329–2344.

[6] Marcel Böhme et al. “Directed Greybox Fuzzing”. In:
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03,
2017. Ed. by Bhavani M. Thuraisingham et al. ACM,
2017, pp. 2329–2344.

[7] Andreas Buja et al. “Statistical inference for ex-
ploratory data analysis and model diagnostics”. In:
Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering
Sciences 367.1906 (2009), pp. 4361–4383.

[8] Cristian Cadar, Daniel Dunbar, and Dawson En-
gler. “KLEE: Unassisted and Automatic Generation
of High-coverage Tests for Complex Systems Pro-
grams”. In: Proceedings of the 8th USENIX Confer-
ence on Operating Systems Design and Implemen-
tation. OSDI’08. San Diego, California: USENIX
Association, 2008, pp. 209–224.

[9] Cristian Cadar et al. “EXE: Automatically Generat-
ing Inputs of Death”. In: ACM Trans. Inf. Syst. Secur.
12.2 (2008), 10:1–10:38.

[10] O. Cekan and Z. Kotasek. “A Probabilistic Context-
Free Grammar Based Random Test Program Gener-
ation”. In: 2017 Euromicro Conference on Digital
System Design (DSD). Aug. 2017, pp. 356–359.

[11] Noam Chomsky. Syntactic structures. Mouton, 1957.

[12] Maria Christakis, Peter Müller, and Valentin
Wüstholz. “Guiding dynamic symbolic execution
toward unverified program executions”. In: Proceed-
ings of the 38th International Conference on Soft-
ware Engineering, ICSE 2016, Austin, TX, USA, May
14-22, 2016. Ed. by Laura K. Dillon, Willem Visser,
and Laurie Williams. ACM, 2016, pp. 144–155.

[13] Yanqin Fan. “Testing the goodness of fit of a paramet-
ric density function by kernel method”. In: Econo-
metric Theory 10.2 (1994), pp. 316–356.

[14] Robert Feldt and Simon M. Poulding. “Finding
test data with specific properties via metaheuristic
search”. In: IEEE 24th International Symposium
on Software Reliability Engineering, ISSRE 2013,
Pasadena, CA, USA, November 4-7, 2013. IEEE
Computer Society, 2013, pp. 350–359.

11

https://tinyurl.com/inputs-from-hell

[15] Robert Feldt et al. “Searching for Cognitively Di-
verse Tests: Towards Universal Test Diversity Met-
rics”. In: First International Conference on Software
Testing Verification and Validation, ICST 2008. IEEE
Computer Society, 2008, pp. 178–186.

[16] Gordon Fraser and Andrea Arcuri. “EvoSuite: Auto-
matic Test Suite Generation for Object-oriented Soft-
ware”. In: Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on
Foundations of Software Engineering. ESEC/FSE
’11. Szeged, Hungary: ACM, 2011, pp. 416–419.

[17] Stuart Geman and Mark Johnson. “Probabilistic
Grammars and their Applications”. In: In Interna-
tional Encyclopedia of the Social & Behavioral Sci-
ences. N.J. Smelser and P.B. 2000, pp. 12075–12082.

[18] Patrice Godefroid, Adam Kiezun, and Michael Y.
Levin. “Grammar-based Whitebox Fuzzing”. In: Pro-
ceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation.
PLDI ’08. Tucson, AZ, USA: ACM, 2008, pp. 206–
215.

[19] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
“DART: Directed Automated Random Testing”. In:
Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implemen-
tation. PLDI ’05. Chicago, IL, USA: ACM, 2005,
pp. 213–223.

[20] Patrice Godefroid, Hila Peleg, and Rishabh Singh.
“Learn&Fuzz: Machine Learning for Input Fuzzing”.
In: Proceedings of the 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing. ASE 2017. Urbana-Champaign, IL, USA: IEEE
Press, 2017, pp. 50–59.

[21] Hai-Feng Guo and Zongyan Qiu. “A dynamic
stochastic model for automatic grammar-based test
generation”. In: Softw., Pract. Exper. 45.11 (2015),
pp. 1519–1547.

[22] Hai-Feng Guo and Zongyan Qiu. “Automatic
Grammar-Based Test Generation”. In: Testing Soft-
ware and Systems - 25th IFIP WG 6.1 International
Conference, ICTSS 2013, Istanbul, Turkey, November
13-15, 2013, Proceedings. Ed. by Hüsnü Yenigün,
Cemal Yilmaz, and Andreas Ulrich. Vol. 8254. Lec-
ture Notes in Computer Science. Springer, 2013,
pp. 17–32.

[23] Kenneth V. Hanford. “Automatic generation of test
cases”. In: IBM Systems Journal 9.4 (1970), pp. 242–
257.

[24] Satia Herfert, Jibesh Patra, and Michael Pradel. “Au-
tomatically reducing tree-structured test inputs”. In:
Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering,

ASE 2017, Urbana, IL, USA, October 30 - Novem-
ber 03, 2017. Ed. by Grigore Rosu, Massimiliano Di
Penta, and Tien N. Nguyen. IEEE Computer Society,
2017, pp. 861–871.

[25] Christian Holler, Kim Herzig, and Andreas Zeller.
“Fuzzing with Code Fragments”. In: Presented
as part of the 21st USENIX Security Symposium
(USENIX Security 12). Bellevue, WA: USENIX,
2012, pp. 445–458.

[26] John E Hopcroft, Rajeev Motwani, and Jeffrey D
Ullman. “Introduction to automata theory, languages,
and computation”. In: Acm Sigact News 32.1 (2001),
pp. 60–65.

[27] Matthias Höschele and Andreas Zeller. “Mining In-
put Grammars from Dynamic Taints”. In: Proceed-
ings of the 31st IEEE/ACM International Conference
on Automated Software Engineering. ASE 2016. Sin-
gapore, Singapore: ACM, 2016, pp. 720–725.

[28] Sarfraz Khurshid, Corina S. Pasareanu, and Willem
Visser. “Generalized Symbolic Execution for Model
Checking and Testing”. In: Tools and Algorithms for
the Construction and Analysis of Systems, 9th Inter-
national Conference, TACAS 2003. Ed. by Hubert
Garavel and John Hatcliff. Vol. 2619. Lecture Notes
in Computer Science. Springer, 2003, pp. 553–568.

[29] Fitsum Meshesha Kifetew, Roberto Tiella, and Paolo
Tonella. “Combining Stochastic Grammars and Ge-
netic Programming for Coverage Testing at the Sys-
tem Level”. In: Search-Based Software Engineering
- 6th International Symposium, SSBSE 2014, Fort-
aleza, Brazil, August 26-29, 2014. Proceedings. Ed.
by Claire Le Goues and Shin Yoo. Vol. 8636. Lecture
Notes in Computer Science. Springer, 2014, pp. 138–
152.

[30] Fitsum Meshesha Kifetew, Roberto Tiella, and Paolo
Tonella. “Generating valid grammar-based test inputs
by means of genetic programming and annotated
grammars”. In: Empirical Software Engineering 22.2
(2017), pp. 928–961.

[31] Fitsum Meshesha Kifetew et al. “Reproducing Field
Failures for Programs with Complex Grammar-
Based Input”. In: Seventh IEEE International Confer-
ence on Software Testing, Verification and Validation,
ICST 2014, March 31 2014-April 4, 2014, Cleveland,
Ohio, USA. IEEE Computer Society, 2014, pp. 163–
172.

[32] Ralf Lämmel and Wolfram Schulte. “Controllable
Combinatorial Coverage in Grammar-Based Test-
ing”. In: Testing of Communicating Systems. Ed.
by M. Ümit Uyar, Ali Y. Duale, and Mariusz A.
Fecko. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2006, pp. 19–38.

12

[33] You Li et al. “Steering symbolic execution to less
traveled paths”. In: Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Ori-
ented Programming Systems Languages & Appli-
cations, OOPSLA 2013, part of SPLASH 2013, In-
dianapolis, IN, USA, October 26-31, 2013. Ed. by
Antony L. Hosking, Patrick Th. Eugster, and Cristina
V. Lopes. ACM, 2013, pp. 19–32.

[34] Zhiqiang Lin and Xiangyu Zhang. “Deriving input
syntactic structure from execution”. In: Proceedings
of the 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2008, At-
lanta, Georgia, USA, November 9-14, 2008. Ed. by
Mary Jean Harrold and Gail C. Murphy. ACM, 2008,
pp. 83–93.

[35] Peng Liu et al. “Automatic text input generation for
mobile testing”. In: Proceedings of the 39th Interna-
tional Conference on Software Engineering, ICSE
2017. Ed. by Sebastián Uchitel, Alessandro Orso,
and Martin P. Robillard. IEEE, 2017, pp. 643–653.

[36] Tianqiang Liu et al. “Creating Consistent Scene
Graphs Using a Probabilistic Grammar”. In: ACM
Trans. Graph. 33.6 (Nov. 2014), 211:1–211:12.

[37] S. Luke. “Two fast tree-creation algorithms for ge-
netic programming”. In: IEEE Transactions on Evo-
lutionary Computation 4.3 (Sept. 2000), pp. 274–
283.

[38] Christopher D. Manning and Hinrich Schütze. Foun-
dations of Statistical Natural Language Processing.
Cambridge, MA, USA: MIT Press, 1999.

[39] Ke Mao, Mark Harman, and Yue Jia. “Sapienz: multi-
objective automated testing for Android applica-
tions”. In: Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA
2016. Ed. by Andreas Zeller and Abhik Roychoud-
hury. ACM, 2016, pp. 94–105.

[40] Phil McMinn. “Search-Based Software Testing:
Past, Present and Future”. In: Proceedings of the
2011 IEEE Fourth International Conference on Soft-
ware Testing, Verification and Validation Workshops.
ICSTW ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 153–163.

[41] Barton P. Miller, Louis Fredriksen, and Bryan So.
“An Empirical Study of the Reliability of UNIX Util-
ities”. In: Commun. ACM 33.12 (Dec. 1990), pp. 32–
44.

[42] Kelly O’Hair. “HPROF: a Heap/CPU profiling tool
in J2SE 5.0”. In: Sun Developer Network, Developer
Technical Articles & Tips 28 (2004).

[43] Carlos Pacheco et al. “Feedback-Directed Random
Test Generation”. In: Proceedings of the 29th Inter-
national Conference on Software Engineering. ICSE
’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 75–84.

[44] A. Panichella, F. M. Kifetew, and P. Tonella. “Au-
tomated Test Case Generation as a Many-Objective
Optimisation Problem with Dynamic Selection of
the Targets”. In: IEEE Transactions on Software En-
gineering 44.2 (Feb. 2018), pp. 122–158.

[45] Terence Parr. The Definitive ANTLR 4 Reference.
2nd. Pragmatic Bookshelf, 2013.

[46] Jibesh Patra and Michael Pradel. Learning to Fuzz:
Application-Independent Fuzz Testing with Prob-
abilistic, Generative Models of Input Data. Tech.
rep. TUD-CS-2016-14664. Technical University of
Darmstadt, Nov. 2016.

[47] Simon M. Poulding et al. “The optimisation of
stochastic grammars to enable cost-effective proba-
bilistic structural testing”. In: Journal of Systems and
Software 103 (2015), pp. 296–310.

[48] Sanjay Rawat et al. “VUzzer: Application-aware
Evolutionary Fuzzing”. In: 24th Annual Network and
Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1,
2017. The Internet Society, 2017.

[49] Yasubumi Sakakibara et al. “Stochastic context-free
grammers for tRNA modeling”. In: Nucleic Acids
Research 22.23 (1994), pp. 5112–5120.

[50] Koushik Sen, Darko Marinov, and Gul Agha.
“CUTE: A Concolic Unit Testing Engine for C”.
In: Proceedings of the 10th European Software En-
gineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering. ESEC/FSE-13. Lisbon, Por-
tugal: ACM, 2005, pp. 263–272.

[51] Qingkai Shi et al. “Measuring the Diversity of a
Test Set With Distance Entropy”. In: IEEE Trans.
Reliability 65.1 (2016), pp. 19–27.

[52] Ting Su et al. “Guided, stochastic model-based GUI
testing of Android apps”. In: Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engi-
neering, ESEC/FSE 2017. Ed. by Eric Bodden et al.
ACM, 2017, pp. 245–256.

[53] Nikolai Tillmann and Jonathan de Halleux. “Pex-
White Box Test Generation for .NET”. In: Tests and
Proofs, Second International Conference, TAP 2008,
Prato, Italy, April 9-11, 2008. Proceedings. Ed. by
Bernhard Beckert and Reiner Hähnle. Vol. 4966. Lec-
ture Notes in Computer Science. Springer, 2008,
pp. 134–153.

[54] Luca Della Toffola, Cristian-Alexandru Staicu, and
Michael Pradel. “Saying ’́HI!’́ is not enough: mining
inputs for effective test generation”. In: Proceedings
of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, Urbana,
IL, USA, October 30 - November 03, 2017. Ed. by
Grigore Rosu, Massimiliano Di Penta, and Tien N.
Nguyen. IEEE Computer Society, 2017, pp. 44–49.

13

[55] Willem Visser, Corina S. Pǎsǎreanu, and Sar-
fraz Khurshid. “Test Input Generation with Java
PathFinder”. In: Proceedings of the 2004 ACM SIG-
SOFT International Symposium on Software Testing
and Analysis. ISSTA ’04. Boston, Massachusetts,
USA: ACM, 2004, pp. 97–107.

[56] Junjie Wang et al. “Skyfire: Data-Driven Seed Gen-
eration for Fuzzing”. In: 2017 IEEE Symposium on
Security and Privacy, SP 2017. IEEE Computer So-
ciety, 2017, pp. 579–594.

[57] W Eric Wong et al. “A survey on software fault
localization”. In: IEEE Transactions on Software
Engineering 42.8 (2016), pp. 707–740.

[58] Xuejun Yang et al. “Finding and Understanding Bugs
in C Compilers”. In: Proceedings of the 32Nd ACM
SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’11. San Jose,
California, USA: ACM, 2011, pp. 283–294.

[59] Michal Zalewski. American Fuzzy Lop. http://
lcamtuf . coredump . cx / afl/. Accessed:
2018-01-28. 2018.

[60] Hong Zhu, Patrick A. V. Hall, and John H. R. May.
“Software Unit Test Coverage and Adequacy”. In:
ACM Comput. Surv. 29.4 (1997), pp. 366–427.

14

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	1 Introduction
	2 Inputs from Hell in a Nutshell
	3 Approach
	3.1 Probabilistic Grammars
	3.2 Learning Probabilities
	3.3 Inverting Probabilities
	3.4 Producing Inputs from a Grammar
	3.5 Implementation

	4 Experimental Evaluation
	4.1 Evaluation Setup
	4.1.1 Generated Inputs
	4.1.2 Research Protocol
	4.1.3 Subject Programs
	4.1.4 Measuring (dis)similarity

	4.2 Experimental results
	4.2.1 Research Question 1
	4.2.2 Research Question 2

	4.3 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work

