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ABSTRACT

A program fails. Under which circumstances does the failure occur?

Our Alhazen approach starts with a run that exhibits a particular

behavior and automatically determines input features associated

with the behavior in question: (1) We use a grammar to parse the

input into individual elements. (2) We use a decision tree learner

to observe and learn which input elements are associated with the

behavior in question. (3) We use the grammar to generate addi-

tional inputs to further strengthen or refute hypotheses as learned

associations. (4) By repeating steps 2 and 3, we obtain a theory

that explains and predicts the given behavior. In our evaluation

using inputs for find, grep, NetHack, and a JavaScript transpiler,

the theories produced by Alhazen predict and produce failures

with high accuracy and allow developers to focus on a small set of

input features: łgrep fails whenever the --fixed-strings option

is used in conjunction with an empty search string.ž

CCS CONCEPTS

· Software and its engineering→ Software testing and debug-

ging; · Theory of computation → Grammars and context-free

languages; Oracles and decision trees; Active learning.
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Figure 1: How Alhazen works. Given a set of initial inputs

and their test outcomeswhich determinewhether the behav-

ior in question is present or not, we parse the input into its

elements using a given input grammar, A learner then de-

termines the associations of input properties and outcomes,

producing hypotheses on the circumstances under which

the behavior occurs. By producing inputs from the gram-

mar, we generate additional tests to further refine or refute

hyoptheses, eventually obtaining a theory that explains and

predicts when the behavior in question occurs.

1 INTRODUCTION

When diagnosing why a program fails, one of the first steps is to

precisely understand the circumstances of the failureÐthat is, when

the failure occurs and when it does not. Such circumstances are

necessary for three reasons. First, knowing the circumstances is

necessary to precisely predict when the failure takes place; this is

important to devise the severity of the failure. Second, one needs

them to design a precise fix: A fix that addresses only a subset of

circumstances is incomplete, while a fix that addresses a superset

may alter behavior in non-failing scenarios. Third, one can use

them to create test cases that reproduce the failure and eventually

validate the fix.
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In this paper, we introduce AlhazenÐan approach that auto-

matically determines the circumstances under which some program

behavior of interest takes place.1 As all program behavior is deter-

mined by its inputs, we see failure circumstances as properties of

the program input; our aim is thus to determine input features that

would be associated with the behavior in question.

As an example of how Alhazen works and what it produces,

assume some program P to evaluate mathematical functions; the

input sqrt(4), for instance, produces the output 2. Given the input

sqrt(-900), however, P hangs. At this point, the astute reader

already may have an idea on the circumstances of the failure; but

we want to determine these automatically. To do so, Alhazen

makes use of three key ingredients, illustrated in Figure 1:

Parsing. We use a grammar to parse program inputs into individ-

ual elements. This allows us to express fine-grained relation-

ships between input elements (and their features) and program

behavior (i.e. presence or absence of a failure).

Figure 2 lists the input grammar for P . This grammar will allow

us to express failure circumstances by means of the ⟨function⟩

being used and the ⟨number⟩ being passed.

Learning. We use a decision tree to learn which features of input

elements are associated with the program behavior in question.

By default, the features used in Alhazen test whether a partic-

ular element occurs in the input or not; in our failure-inducing

input, sqrt is present, whereas sin is not. If some element has

a numerical interpretation (such as ⟨number⟩), it also uses its

maximum value as feature.

The decision tree learner produces a tree that explains and

predicts when the behavior in question occurs based on a subset

of the input features. Figure 3 shows the initial decision tree

learned from the passing input sqrt(4) and the failing input

sqrt(-900). The initial hypothesis is that the failure occurs

when the largest 2 ⟨number⟩ is less than or equal to -445.5Ða

predicate chosen by the decision tree learner as a feature that

correctly distinguishes all observations so far.

1H. asan Ibn al-Haytham (Latinized as Alhazen; ∼965ś∼1040) was an Arab researcher
of the Islamic Golden Age. His Kitāb al-Manāz. ir łBook of Opticsž(1011ś1021) was
one of the first embodiments of the modern scientific method, proving hypotheses
through reproducible experiments that vary the experimental conditions in a system-
atic manner [34].
2In the example, there cannot be more than one number, but Alhazen would be able
to handle it if there were.

⟨start⟩ → ⟨function⟩ "(" ⟨number⟩ ")";

⟨function⟩ → "sqrt" | "sin" | "cos" | "tan";

⟨number⟩ → "-"? /[1-9][0-9]*/ ("." /[0-9]+/)?;

Figure 2: A grammar for evaluating functions.

max
(

⟨number⟩
)

≤ −445.5?

✘ ✔

yes no

Figure 3: Alhazen’s initial hypothesis in the sqrt example.

⟨function⟩ = "sqrt"?

✔ max
(

⟨number⟩
)

≤ 0.0?

✘ ✔

no yes

yes no

Figure 4: Final decision tree after iteration 29.

⟨function⟩ = "sqrt"?

result < 4.0

max
(

⟨number⟩
)

≥ 16.0?

result ≥ 4.0 result < 4.0

no

yes

yes no

Figure 5: Circumstances for the result being 4.0 or more.

Generating. To precisely capture the failure circumstances, we

need further experiments. To this end, Alhazen uses the gram-

mar as a producer of inputs and systematically explore alterna-

tives to the inputs observed so far. For each decision branch in

the tree, Alhazen generates further inputs to refine or refute

the association with the predicted outcome.

In our example, Alhazen would generate more inputs for each

branch in Figure 3. These satisfy the given conditions from the

tree, but otherwise are randomly chosen from the grammarÐ

say, cos(-444.5) for the left branch and cos(-446.5) for the

right branch. Since both pass, the original decision tree is inade-

quate. Instead,Alhazen refines the failure hypothesis such that

⟨number⟩ must be less than -673.25. Note that this hypothesis

is consistent with all observations so far.

As Alhazen generates further inputs for all branches, it even-

tually learns that the failure depends on sqrt() being called.

After 29 iterations, Alhazen delivers Figure 4, which correctly

describes the failure conditions: The ⟨function⟩ "sqrt" is used,

and the ⟨number⟩ is less than or equal to 0.

Beyond just pass and fail predicates, Alhazen can be applied to

obtain explanations and predictions for arbitrary predicates over

the program execution. For instance, one can use it to determine the

circumstances under which a specific output is produced; Figure 5

shows the circumstances for the output being 4 or more. (Note that

the trigonometric functions return values in the range [−1, 1].)

Since it requires no program analysis, Alhazen scales to arbi-

trary large programs. NetHack is an adventure games, consisting of

240424 lines of code. In January 2020, it was found that NetHack

was vulnerable to a buffer overflow [11]. Using a .ini grammar to

parse its configuration file, Alhazen easily determines that the

failure occurs as soon as some line in the configuration file has

more than 619 characters (Figure 6).

Alhazen can be seen as a full automation of the scientific

method, creating, refining and refuting hypotheses from obser-

vations over specifically constructed experiments to eventually

produce a theory of when the program exhibits a specific behavior.
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len
(

⟨line⟩
)

≤ 619?

✔ ✘

yes no

Figure 6: Decision tree for a NetHack failure.

The grammar serves as parser and producer of inputs; the decision

tree captures the circumstances that distinguish program behavior.

The structure of this paper follows its three main contributions:

Input elements as features. (Section 2) Using a grammar to parse

inputs into fine-grained elements, we can associate the presence

or absence of such elements with observed program behavior.

This makes these elements features for machine learners that

can thus infer precise models of program behavior from ob-

served runs. To the best of our knowledge, ours is the first

approach to combine general-purpose parsing and machine

learning in software engineering.

Creating hypotheses for program behavior. (Section 3) Using

a decision tree learner, we can extract associations between

input features and program behavior. Decision tree learners are

not very precise, but they provide very good explanations to

humansÐin our case, predicates over input features that capture

the circumstances of the behavior. To the best of our knowledge,

this is the first use of machine learners over general-purpose

input features for predicting, fixing, and producing failures.

Refining and refuting hypotheses. (Section 4) Using the gram-

mar, we can produce additional test cases to refine or refute

hypotheses as produced from the learner; we thus combine

the explainability of decision trees with the production power

of grammars. As the grammar allows us to systematically test

alternatives, this active learning approach makes the resulting

diagnosis much more precise. To the best of our knowledge,

the production of additional inputs to satisfy and refine deci-

sion tree constraints is novel, making ours the first automated

debugging approach producing a theory over syntactic features.

In Section 5, we evaluate the models generated by Alhazen for

their accuracy. Applied on a variety of real-world bugs in standard

programs, including grep and find, we find that the resulting mod-

els precisely capture failure circumstances. Applied on JavaScript

and its processors, Alhazen is able to isolate nontrivial conditions

over elements that lead to failure. After discussing related work

(Section 6), Section 7 closes the paper with conclusion and future

work, as well as links to code and data.

2 INPUT ELEMENTS AS FEATURES

Alhazen associates properties of the input with program behavior.

Those properties are derived from a context-free grammar of the

input language. We use presence and absence of non-terminal sym-

bols in the grammar, the length of individual nodes in the path tree,

the code point of characters in nodes and the numeric interpreta-

tion of parse tree nodes as features. The following section describes

the extraction of these features from an input.

⟨start⟩ → ⟨empty⟩ | ⟨start⟩ ⟨suffix⟩;

⟨suffix⟩ → "a";

⟨empty⟩ → "";

Figure 7: A grammar with a loop.

2.1 Context-Free Grammars

A context-free grammar consists of a start symbol and a set of

production rules. A production rule ⟨P⟩ → α consists of a non-

terminal symbol ⟨P⟩ on the left and a control form α on the right.

A control form can be one of the following:

Terminal symbol. A quoted string.

Non-terminal symbol. A symbol name in angle brackets.

Concatenation. A sequence of control forms.

Quantification. A control form, called the subject, annotated with

one of +, * or ?.

Alternation. A sequence of control forms, separated by |.

When writing grammars, we use regular expressions delimited

with slashes as control forms for better readability (e.g. in the

⟨number⟩ production of Figure 2). This is possible because any reg-

ular expression can be transformed into an equivalent context-free

grammar. We use parentheses to avoid confusion about precedence.

If a production rule has an alternation as its right-hand side, we

call the control forms within this alternation the alternatives of

the non-terminal. In a production rule ⟨P⟩ → α |(β(γ |δ )), ⟨P⟩ has

the alternatives α and β(γ |δ ). Note that γ and β are not considered

alternatives of ⟨P⟩ on their own.

A producer generates a parse tree from a grammar. A simple

base algorithm for a producer is to generate the nodes of the tree in

pre-order. Contrary to most standard text books, we have a node for

each control form, so a derivation for ⟨function⟩ → "sqrt" | "cos"

has three nodes in total, one for ⟨function⟩, one for the alternation

and one for the chosen alternative.

We call the sequence of control forms in the order the nodes were

produced the derivation sequence. One possible derivation sequence

for the parse tree of sqrt(-900) is (1) ⟨start⟩ (2) Concatenation

of ⟨function⟩ "(" ⟨number⟩ ")" (3) ⟨function⟩ (4) alternation of

"sqrt" | "tan" | . . . (5) "sqrt" (6) "(" (7) ⟨number⟩ (8) "-900"

(9) ")". This is a pre-order traversal of the parse tree.

There is one catch to look out for when implementing this algo-

rithm. Assume we want to generate a parse tree for the grammar

in Figure 7, and we want the leaf word to contain "a". Within a

node for ⟨start⟩, we need to decide which alternative we want. We

choose the second, as this allows us to generate "a". In a pre-order

traversal, we need to generate another node for ⟨start⟩ now. As we

did not yet generate "a", it is quite easy to take the same decision

again, and run into an endless loop. We therefore allow the algo-

rithm to create the child nodes for a concatenation in any order,

and add them to the parent node in the required order.

However, this means that there are several derivation sequences

for the same leaf word. As an example, (1) ⟨start⟩ (2) Concatenation

of ⟨function⟩ "(" ⟨number⟩ ")" (3) "(" (4) ")" (5) ⟨function⟩ (6) al-

ternation of "sqrt" | "tan" | . . . (7) "sqrt" (8) ⟨number⟩ (9) "-900"

is a possible derivation sequence for sqrt(-900) just as well.

In some cases, there can be different parse trees for the same

word. In this case, we call the grammar ambiguous. Ambiguities in
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Before the rewrite

⟨start⟩ → ⟨function⟩ "(" ⟨number⟩ ")";

⟨function⟩ → "sqrt" | "tan" | "sin" | "cos";

⟨number⟩ → "-"? /[1-9][0-9]*/ ( "." /[0-9]+/)?;

After the rewrite

⟨start⟩ → ⟨function⟩ "(" ⟨number⟩ ")" | "sqrt(-900)";

⟨function⟩ → "sqrt" | "tan" | "sin" | "cos";

⟨number⟩ → "-"? /[1-9][0-9]*/ ( "." /[0-9]+/)? | "-900";

Figure 8: The last alternatives for start and number are

added by the rewrite step.

grammars usually stem from the fact that disambiguation relies on

properties not reflected in a context-free grammar, a poor quality

of the formalization of the input language, or a mixture of both.

Throughout this paper, we need a notion of whether a control

form ⟨Q⟩ is reachable from a control form ⟨P⟩. The distance from a

control form ⟨P⟩ to a control form ⟨Q⟩ is the minimal number of

operations required to create a node labeled ⟨Q⟩, after the creation

of a node labeled ⟨P⟩, in the subtree of ⟨P⟩. If there can be a node

labeled with ⟨Q⟩ in the subtree of a node labeled with ⟨P⟩, we call

⟨Q⟩ reachable from ⟨P⟩. Otherwise, ⟨Q⟩ is not reachable from ⟨P⟩,

and the distance from ⟨P⟩ to ⟨Q⟩ is infinite.

2.2 Grammar Transformation

The behaviors we want to explain are triggered by complex input

structures. While all inputs are words of the grammar, the grammar

is often too fine-grained to capture the essence of what causes a

bug. Therefore, we perform a rewrite step which adds additional

alternatives that capture more complex structures. To this end, for

all non-terminal symbols in the grammar, we determine the word

derived by this symbol in the bug-triggering input, and add those

words as alternatives to the symbol. Figure 8 shows the rewritten

grammar for the calculator example.

In the rewritten grammar, "-900" is added as alternative to

⟨number⟩. Also, the full string is added as an alternative to the

start symbol. We do not add "sqrt" as an alternative to ⟨function⟩,

because it is already there. Note that the rewrite step makes all our

grammars more ambiguous as they always have at least two parse

trees for the input we started with.

3 CREATING HYPOTHESES

FOR PROGRAM BEHAVIOR

We use a decision tree learner [32] to learn associations between

program behavior and input features. In each iteration, Alhazen

trains a learner on all known input samples, and uses the obtained

tree to generate more inputs, which help to refine the tree in the

next iteration.

Decision tree learners express associations in terms of predicates

over numeric features, i.e. max(⟨number⟩) ≤ 0.0. As we want to

reason about program inputs, we need to extract numeric features

from program inputs.We do so by parsing each input, and extracting

features from the parse tree. For each production rule and each

alternative, we consider the following features:

Existence. This feature has a value of 1 iff the production rule

was used in the derivation sequence for an input at least once.

We write the existence feature for the production ⟨start⟩ as

exists(⟨start⟩). For alternatives, we have an existence feature

for the non-terminal (e.g. exists(⟨function⟩)) and individual

existence features for each alternative (e.g. exists(⟨function⟩

== "sqrt")).

Length. If for a production ⟨P⟩, ⟨P⟩ itself is reachable from ⟨P⟩

or a quantification is reachable from ⟨P⟩, we use the number

of characters in the word derived by ⟨P⟩ as a feature. For the

production ⟨number⟩, we write this feature as len(⟨number⟩).

If the right-hand side of the production rule for ⟨P⟩ is a quan-

tification, we instead introduce a feature qu-len(⟨P⟩), which

gives the number of child nodes of this quantification. If ⟨P⟩

is used multiple times in the derivation, we use the maximum

value for both len and qu-len.

Maximal Code Point. For all productions ⟨P⟩ that have more

than one derivation, we introduce a feature max-char(⟨P⟩)

for the maximal code pointÐthat is, the maximal integer repre-

sentation for all characters in the word derived by ⟨P⟩. If there

are multiple words derived by ⟨P⟩, we use the maximum code

point across all words.

Numeric Interpretation. If a production ⟨P⟩ only derives words

composed of the characters 0-9, . and -, we introduce a feature

max(⟨P⟩), which interprets the word as a floating-point number.

Again, we use the maximum value for multiple production uses.

All those features are derived from the parse tree of an input.

Due to the ambiguity in our grammars, we need to consider all

possible parse trees. Therefore, we use an Earley Parser [15], which

gives us all possible parse trees, rather than just one.

Table 1 shows the feature values for sqrt(-900). The ⟨start⟩ rule

is used, and so is our newly-introduced alternative, so exists(⟨start⟩)

and exists(⟨start⟩ == "sqrt(-900)") both have a value of 1. The

length of this word is 11 characters, and the maximal code point is

116 (which corresponds to ’t’). If we had just one parse tree, that

would have been all. However, we can also see the alternative parse

tree, which uses the pre-existing rule for ⟨start⟩. In this parse tree,

we have exists(⟨function⟩) and exists(⟨function⟩ == "sqrt")

as 1, but ⟨function⟩ == "cos" as 0. We can again see maximum code

point features for ⟨function⟩ and ⟨number⟩, as well as the numeric

interpretation for ⟨number⟩, which is -900.

4 GENERATING TESTS

TO REFINE HYPOTHESES

As shown in Figure 1, Alhazen uses a feedback loop to systemati-

cally refine or refute hypotheses. To this end, we generate tests that

explore the various paths from the decision tree.

4.1 Extracting Prediction Paths

In a decision tree, each internal node contains a predicate f ≤ v ,

where f is a feature. Leaves are labeled with the program behavior.

When a decision tree learner classifies a sample s , it traverses its

internal structure in the following way: Starting at the root node,

the predicate in the node is checked against the (features of) the

sample. If it is fulfilled, the łyesž branch is examined next, otherwise

the traversal continues at the łnož branch. As soon as the traversal
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Table 1: All feature values for sqrt(-900) and the transformed

subgrammar in Figure 8

Feature Value

max-char(⟨start ⟩) 116

len(⟨start ⟩) 11

⟨function⟩ == "sqrt" 1

⟨function⟩ == "cos" 0

⟨function⟩ == "sin" 0

exists(⟨start ⟩) 1

exists(⟨start ⟩) == "sqrt(-900)") 1

⟨function⟩ == "tan" 0

max-char(⟨function⟩) 116

⟨number ⟩ 1

⟨number ⟩ == "-900" 1

max-char(⟨number ⟩) 57

max(⟨number ⟩) -900

len(⟨number ⟩) 4

reaches a leaf, the label of this leaf is the prediction. That is, each

prediction traverses a path from the root to a child node of the

treeÐthe prediction path for this sample.

Each path in the tree, from root to leaf, can be written as a

sequence of predicates of the form fi ≤ v or fi > v .

To generate test inputs, for all paths in the tree, we take all

subsets of predicates on the path and negate them. For instance, for

a path with the predicates f1 ≤ v1 and f2 > v2 we would generate

(1) f1 ≤ v1 ∧ f2 > v2, (2) f1 > v1 ∧ f2 > v2, (3) f1 ≤ v1 ∧ f2 ≤ v2,

and (4) f1 > v1 ∧ f2 > v2.

Let us now generate samples which fulfill these sets of predicates.

We then proceed in three steps:

(1) We slice the grammar into a subset that does not contain

productions prohibited by the tree predicates (Section 4.2).

(2) We eliminate predicate sets that are infeasible within the

grammar (Section 4.3).

(3) We produce solutions for feasible predicates (Section 4.4),

which we repeat until the best possible candidate is found

within a time budget (Section 4.5).

4.2 Slicing the Grammar

We start by generating a subset of the grammar without productions

that would be prohibited by the existence predicatesÐthat is, it

excludes all productions or alternatives where the predicate states

that the existence feature is < 1. As an example, if the predicate

exists(⟨number⟩ == "-900") ≤ 0.5 is in the predicate set, wewould

rewrite the production rule for ⟨number⟩ as ⟨number⟩ → "-"?

/[1-9][0-9]*/ ( "." /[0-9]+/)?.

Due to ambiguity, a production may implicitly use a different

production in another derivation sequence for the same word. In

the transformed grammar for our example (Figure 8), using ⟨start⟩

== "sqrt(-900)" means that ⟨number⟩ == "-900" is used implic-

itly, via a different parse tree for the same word. For all productions

and alternatives which derive the same word in all parse trees

(that is, the right-hand side contains only terminal symbols or non-

terminal symbols with just one production that recursively always

derives the same word), we precompute the set of productions

that are used implicitly. We also remove a production if this set

contains a prohibited production. In the example, the predicate

exists(⟨number⟩ == "-900") ≤ 0.5 would lead to removal of both

"-900" and "sqrt(-900)". This addresses the ambiguity we in-

troduced in the grammar transformation, but not necessarily all

ambiguities in the grammar.

4.3 Feasibility Check

In our next step, we identify and eliminate predicate sets that are

infeasible within the grammar:

Existence. Productions and alternatives corresponding to exis-

tence features with f > 0.5 predicates are required by the

predicate set. We check whether those are reachable within the

grammar without prohibited features.

Length. For length features, we check reachability only, as with

the existence features.

Maximal Code Point. We check reachability of the production

rule, and we check whether there is a terminal symbol that

contains the required code point reachable from the production.

Numeric Interpretation. We try to parse the string of the re-

quired value starting at the production of the feature.

As an example, let’s assume we want to fulfill the predicate

set max-char(⟨number⟩) == 55. 55 is the ASCII value for 7, and

"7" can be contained in "-"? /[1-9][0-9]*/ ("." /[0-9]+/)?. So

the predicate set passes the first test. Next, we check reachability

within the sliced grammar. ⟨number⟩ is reachable via the ⟨start⟩

production, and therefore this test is passed as well.

If a predicate set fails one of those tests, it is infeasible and will

not be considered.

4.4 Producing Inputs

In the next step, we produce candidates for derivation sequences

that fulfill the given predicates.

To generate an input, we produce the nodes of a parse tree in pre-

order as described in Section 2.1. During this process, the algorithm

needs to make three decisions:

(1) For a concatenation, decide the order of the children.

(2) For a quantification, decide how many children to add.

(3) For an alternation, decide which control form to use.

Each of those decisions corresponds to an element in the deriva-

tion sequence, and every time there is more than one possible choice.

Each derivation sequence is split into a prefix and a postfix. When

this process creates a new sequence, it lists all possible choices

for the first decision in the postfix, and generates one derivation

sequence for each of those, by appending each one of those to the

prefix of this sequence. For each new derivation sequence, it uses

a greedy approach to finish off the sequence. The part that was

generated greedily is the new postfix. In the following, we describe

this greedy approach.

Each feature is associated with a control form. When the greedy

approach has to take a decision, we choose an option such that the

label in the new (or next) child node minimizes the distance to the

closest of those control forms. When this control form is reached,

most features require other heuristics for the subtree of this node.
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• For code point features, there is always a terminal symbol

that contains the required code point, and we can use it as a

target for the distance check.

• For numeric interpretations, we parse the required value,

and try to reach the root of this parse tree and the same

children as in the known parse tree below the root.

• For length predicates, we can use the distance to the produc-

tion that the length requirement belongs to, and we can then

try to use longer or shorter derivations.

If there is no predicate which influences a decision, we use the

alternative which allows for the shortest derivation sequence.

4.5 Searching the Best Derivation Sequence

The process in Section 4.4 can generate different candidates, which

need to be ranked and refined.

The search process maintains a list L of already analyzed deriva-

tion sequences. We rank those sequences based on how many pred-

icates they fulfill, and choose the current-best derivation sequence

for modification. The newly generated derivation sequences are

added to the list, and may be chosen for refinement in the input

production from Section 4.4. As soon as a derivation sequence ful-

fills all predicates, the algorithm returns this input as a solution

and terminates.

This search process will not terminate if the feature set is infea-

sible, that is, if it contains a combination of predicates that cannot

be fulfilled. If we could not generate a sample within the timeout

of two minutes, we consider a predicate set infeasible.

Within Alhazen, we always have a list of predicate sets when

we start the search. While we use only one set for rating derivation

sequences, and start with empty L for the next predicate set as soon

as we find a solution, we check each derivation sequence against

all predicate sets and output all matching inputs for each sequence.

5 EVALUATION

We evaluate Alhazen in three different scenarios:

Predictor. Can Alhazen be used to predict whether an input trig-

gers the bug? (Section 5.2)

Producer. Can Alhazen be used to produce more inputs that

trigger the bug? (Section 5.3)

Debugging Aid. Does Alhazen reduce the search space in debug-

ging? (Section 5.4)

As we are not aware of other approaches that act as predictors or

producers, we evaluate the accuracy of Alhazen in these scenar-

ios. By assessing the quality of decision trees both as predictors

and producers, we ensure that they neither overspecialize (which

wouldmake them accurate producers, but inaccurate predictors) nor

overgeneralize (which would make them accurate predictors, but

inaccurate producers). For the third scenario, we evaluate whether

Alhazen separates relevant from irrelevant input features, allowing

developers to focus on a subset of the input language.

5.1 Evaluation Setup

5.1.1 Subjects. For any predicate over observable program be-

havior, Alhazen can explain the circumstances that trigger this

behavior in terms of input features. In our evaluation, we focus

Table 2: Subjects and Predicates of Interest

Bug ID Predicate Bug ID Predicate
of Interest of Interest

calculator.1 error message find.24bf33c0 property
Closure.1978 exception find.b445af98 regression
Closure.2808 exception find.e1d0a991 regression
Closure.2842 exception find.ff248a20 timeout
Closure.2937 exception grep.c96b0f2c property
Closure.3178 exception grep.2be0c659 regression
Closure.3379 exception grep.3220317a crash oracle
rhino.385 exception grep.3c3bdace crash oracle
rhino.386 exception grep.55cf7b6a regression
genson.120 exception grep.5fa8c7c9 timeout
find.07b941b1 crash oracle grep.7aa698d3 regression
find.091557f6 crash oracle grep.c1cb19fe regression
find.dbcb10e9 crash oracle

on explaining undesired program behavior (bugs). Table 2 lists our

subjects and predicates.

Using the same fuzzer as [18], we found nine bugs in the Google

Closure Compiler [10], the Mozilla Rhino JavaScript Runtime [9]

and the Genson JSON parser [6].

Those bugs are a good fit forAlhazen because they are triggered

by a specific input (by construction, fuzzing generates inputs). All

three subjects are written in Java, and report the exception type,

file and line number if an error occurs. We used this information

for our predicate of interest in the same way as [18] did.

As fourth and fifth subject, we took the grep and find command

line utils from the dbgbench benchmark [13]. Dbgbench provides

the means to compile and execute old versions of grep and find,

and documents the bugs that were present in those old versions.

We used different predicates of interest here.

Crash. We check whether the program crashes.

Timeout. We checkwhether the program terminateswithin 500ms.

Regression. We check whether more recent versions of grep or

find respectively show the same behavior.

Property. grep only ever outputs a substring of the input, and

find only ever outputs path to existing files. We use checks for

those properties as oracles.

Table 2 lists our subjects and the related predicate type.

5.1.2 Evaluation Grammars. In our evaluation, we use a grammar

for each subject:

• For the Google Closure Compiler, Mozilla Rhino, and Genson

we adapted grammars found in the popular GitHub repos-

itory for ANTLR grammars [7]. (ANTLR [28] is a widely

known parser generator.)

For grep and find, we wrote grammars ourselves.

• For grep, the grammar generates a full shell command, con-

sisting of an input, a list of environment variables and an

invocation of grep. The input is an alphanumeric string,

which may contain utf-8 multibyte characters. The grammar

allows for all environment variables that are documented in

the man page of grep for the oldest version we used. The

grammar allows for all command line flags that are docu-

mented in the man page of grep for the oldest version we

used.
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• The find grammar also generates a full shell command, and

allows for environment variables and command line flags. In

addition, the find grammar generates a sequence of mkdir,

touch and ln shell commands to generate directories, files

and symbolic links.

5.1.3 Generating Data Sets. As other machine learning approaches,

evaluating our approach requires a large set of input data. We could

just generate samples randomly, but it is very unlikely to generate

a behavior-triggering sample with a pure random producer. Having

no behavior-triggering samples in the data set makes it useless.

To avoid this, we use a modified version of the łmore of the samež

approach taken by Pavese et al. [29]. A word is derived from the

grammar by replacing non-terminals with the right-hand side of one

of their production rules, until there is no non-terminal left in the

resulting sequence. If a production rule has multiple alternatives, a

random producer is employed to select which alternative is chosen.

The input sample is a word in the grammar, therefore it has a

sequence of derivations that generate it. In our sample generation,

we increase the probability of choosing the same alternative as in

the initial bug-triggering input.

For a wordw , let #w (⟨P⟩) be the number of occurrences of ⟨P⟩

withinw ’s derivation sequence, and let #(⟨P⟩ → α) be the number

of occurrences of the alternative ⟨P⟩ → α within this sequence. For

ambiguous grammars, let #w (•) be the sum of those counts for all

possible parse trees.

Using those counts to calculate probabilities directly would gen-

erate the same sample over and over again. For a production rule

⟨Q⟩ → α |β |γ , we therefore define a smoothed count, s(⟨Q⟩ → α)

with s(⟨Q⟩ → α) = #(⟨Q⟩ → α)+ 1. Further, s(⟨Q⟩) is the sum over

the smoothed counts for all alternatives of ⟨Q⟩. For our grammar-

based fuzzing, the probability to choose the alternative ⟨Q⟩ → β

(over ⟨Q⟩ → α or ⟨Q⟩ → γ ) is P(⟨Q⟩ → γ ) =
s(⟨Q⟩→α )
s(⟨Q⟩)

.

This approach may (still) generate the same sample over and

over again, so we remove duplicates, and re-run until we have 1000

unique, behavior-triggering samples (the number of non behavior-

triggering samples usually is larger than 1000 at this point). We

stopped with a smaller number of samples if 20 re-runs could not

generate enough behavior-triggering samples, or a timeout of 1

hour was exhausted. Table 3 gives the number of bug-triggering and

non bug-triggering samples for each subject. Please note that we

ran this algorithm with the transformed grammars (see Section 2.2).

It is clearly visible that some bugs are harder to trigger then oth-

ers. For find.07b941b1[1] and find.24bf33c0[2], it seems to be

even easier to trigger the bug than generate a benign input samples.

On the other hand, some bugs are particularly hard to trigger. For

grep.7aa698d3[4], we have just 25 bug-triggering input samples.

This bug requires a multibyte character in the input, and a regex

matching this multibyte character as an argument to grep. The

probabilities do not model relations between different parts of the

input, so the producer generates this structure only by chance.

Then, we split the generated samples into sets. 1
4 of the bug-

triggering samples (the benign samples, if there were less benign

than bug-triggering samples) will be used as training set, and the

remaining 3
4 of them will be the test set. Afterwards, we randomly

select benign samples for the training set, such that the training set

has the same number of benign and bug-triggering samples.

Table 3: Number of bug-triggering vs. non bug-triggering in-

puts after generating inputs.

Subject
All Samples Training Samples

benign bug-triggering benign bug-triggering

calculator.1 7163 1041 260 260

closure.1978 8295 868 217 217
closure.2808 3952 1173 293 293
closure.2842 8186 75 19 19
closure.2937 6041 1076 269 269
closure.3178 9558 638 159 159
closure.3379 2915 1152 288 288

rhino.385 4066 1079 270 270
rhino.386 2930 1139 285 285

genson.120 15455 1046 261 261

find.07b941b1 808 1260 202 202
find.091557f6 3487 578 144 144
find.24bf33c0 574 1475 143 143
find.b445af98 3020 76 19 19
find.dbcb10e9 1839 1228 307 307
find.e1d0a991 2758 285 71 71
find.ff248a20 3358 736 184 184

grep.2be0c659 2861 239 60 60
grep.3220317a 3625 475 119 119
grep.3c3bdace 1904 1377 344 344
grep.55cf7b6a 2250 751 188 188
grep.5fa8c7c9 4829 543 136 136
grep.7aa698d3 3075 25 6 6
grep.c1cb19fe 4922 179 45 45
grep.c96b0f2c 3147 50 12 12

Next, we split the remaining samples into sets such that each

set is as large as the training set, each set has the same number of

benign and bug-triggering samples and each sample is contained

in at least one set.

5.2 Alhazen as a Predictor

To evaluate whether Alhazen can predict whether an input is bug-

triggering, we generated sample sets with a different approach (see

Section 5.1.3), and calculated precision and accuracy on those.

We ran Alhazen on the training set with two different seeds for

the random producer, and evaluated each run on all the sets. Within

these runs, we performed at most 40 iterations of the feedback loop,

and stopped if we did not generate any new samples in an iteration.

The results are reported in Table 4. Precision and accuracy numbers

are averages over two runs for each set.

We see that Alhazen works very well as a predictor:

Used as predictor, Alhazen classifies 92% of all inputs correctly.

Besides demonstrating the high accuracy of the decision trees

produced by Alhazen, this also has some practical value. Most

importantly, it means that Alhazen can be used for automatic

workarounds, diverting potentially failure-inducing input before it

reaches the program in questionÐa feature that would be especially

valuable if the failure of interest is a vulnerability. Since Alhazen

runs fully automatically, such workarounds can be deployed as

soon as a failure is detected.
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Table 4: Precision and accuracy when using Alhazen as a

predictor. All values are averages over 2 runs.

Bug Precision Accuracy Bug Precision Accuracy

calculator.1 100.0% 100.0% find.ff248a20 99.1% 97.6%
closure.1978 97.2% 86.4% genson.120 100.0% 98.6%
closure.2808 99.6% 96.2% grep.2be0c659 78.0% 66.0%
closure.2842 98.6% 96.7% grep.3220317a 99.7% 99.4%
closure.2937 99.5% 92.3% grep.3c3bdace 99.6% 98.9%
closure.3178 96.1% 87.6% grep.55cf7b6a 90.9% 90.6%
closure.3379 94.0% 89.1% grep.5fa8c7c9 100.0% 99.5%
find.07b941b1 100.0% 100.0% grep.7aa698d3 79.4% 84.1%
find.091557f6 96.7% 95.5% grep.c1cb19fe 87.4% 86.6%
find.24bf33c0 87.7% 91.5% grep.c96b0f2c 82.0% 74.8%
find.b445af98 96.1% 96.2% rhino.385 100.0% 92.6%
find.dbcb10e9 100.0% 100.0% rhino.386 100.0% 96.4%
find.e1d0a991 97.3% 93.6%

Total 95.0% 92.0%

The only case where Alhazen has an accuracy of less than

80% is grep.2be0c659[3], where the failure occurs if a given regex

matches the inputÐa property not modelled by our features. While

Alhazen can check for features which make such a match more

likely (e.g. a ’.’ in the regex), the predictive power suffers.3

5.3 Alhazen as a Producer

Let us now examine how well Alhazen performs as a producer for

more samples.We ranAlhazen on the training sets we generated in

Section 5.1.3, and obtained the predicate sets from the final tree. As

before, we generated samples for all paths, and generated variations

of those subsets as described in Section 4. We then checked whether

the prediction of the tree matches actual program behavior.

Table 5 gives the results for this experiment. The łFailing Inputsž

column lists the absolute number of new failure-inducing inputs

generated. The final decision tree may have multiple paths that

lead to the prediction of a failure. Alhazen generates a new sample

for each of these paths, however, if it runs into a sample that fulfills

all predicates on one path while solving another, this sample will

also be reported. Hence, a value of 4 means either that the tree had

four paths; or it had two paths, and three solutions for one of them

were discovered while searching for a solution for the other one.

For the large majority of subjects, Alhazen produced several

new failure-inducing inputs.

Such additional inputs that trigger the bug can be very valuable

in practice. In manual debugging, they can serve as a test set to

ensure the bug has actually been fixed. For automated repairs, they

can ensure that all aspects of a bug have been fixed, and not only

the symptoms of the single failure in question.

The łPrecisionž column shows the percentage of these failure-

inducing inputs within the entire set of inputs. We see that in total,

about two thirds of all produced inputs actually trigger the failure.

3In practice, what would be helpful here is a more domain-specific feature such
as łregex matchesž. For this evaluation, however, we stick to the generic features
introduced in Section 3, which we chose well before starting the evaluation. Over-
specialization in the set of features is a real risk for evaluation: In the extreme, a
hypothetical łwill failž feature would always yield perfect results.

Table 5: Precision and accuracy when using Alhazen as a

producer. Precision and accuracy are averages over 2 runs.

Bug Failing Inputs Precision Accuracy

calculator.1 1 100% 100%

closure.1978 1 16.7% 95.5%
closure.2808 11 52.4% 84.4%
closure.2842 0 0.0% 1.000
closure.2937 1 4.5% 72.0%
closure.3178 8 22.9% 80.0%
closure.3379 0 0.0% 100.0%

find.07b941b1 6 100.0% 100.0%
find.091557f6 49 81.7% 90.7%
find.24bf33c0 14 100.0% 77.3%
find.b445af98 20 87.0% 98.4%
find.dbcb10e9 20 100.0% 100.0%
find.e1d0a991 61 58.1% 78.5%
find.ff248a20 94 68.6% 87.1%

genson.120 4 80.0% 94.1%

grep.2be0c659 26 70.0% 90.4%
grep.3220317a 12 97.9% 98.0%
grep.3c3bdace 30 100.0% 100.0%
grep.55cf7b6a 64 100.0% 94.9%
grep.5fa8c7c9 7 100.0% 100.0%
grep.7aa698d3 22 81.5% 96.3%
grep.c1cb19fe 13 41.9% 59.2%
grep.c96b0f2c 0 0.0% 90.9%

rhino.385 8 100.0% 100.0%
rhino.386 13 92.9% 98.1%

Total 3093 68.5% 92.3%

On average, 68.5% of the inputs produced by Alhazen as

failure-inducing actually trigger the failure.

For programs where a bug is easily triggered, this number indi-

cates a high efficiency of test generation. Even if a test unexpectedly

passes, one can simply repeat it with the next input; a precision of

68.5% means that few tests need to be repeated.

For some programs, however, the conditions to trigger a bug

are hard to meet, and even harder to model. Indeed, for some sub-

jects, Alhazen does not generate any new failure-inducing input

at all. For bug grep.c96b0f2c[5], Alhazen needs to generate an

input that contains an empty line, and a regex which matches an

empty line; for closure.2937[8], the bug is triggered only by a spe-

cific nesting of syntax elements. Both regex matching and element

nesting are not reflected by our generic input features.

On the other hand, if one uses Alhazen to produce passing

inputs, a failure is very unlikely. This is reflected in the łAccu-

racyž column, where we see how many of the inputs produced by

Alhazen as passing and failing actually are passing and failing.

The total shows the overall very high accuracy of Alhazen as a

producer.

On average, 92.5% of the inputs produced by Alhazen as

passing or failing actually pass and fail as produced.
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5.4 Alhazen as a Debugging Aid

We already have seen that usingAlhazen as predictor and producer

can be very useful in debugging. It may also be interesting how to

use the trees directly. However, it is not yet clear to us, and out of

scope for this work, how to present those trees to developers.

Most published automated debugging techniques are evaluated

for their fault localization capability, that is, their ability to predict

where a bug should be fixed. Focusing on code is not appropriate

for Alhazen, as it does not predict a bug location; actually, as it

treats the program under test as a black box, it neither has nor

needs nor produces any concept of a fault location. (This makes

Alhazen especially useful if the program in question, say a neural

network, has no concept of a fault location either.)

Other automated debugging techniques allow developers to fo-

cus on the relevant parts of the input; delta debugging [37], for

instance, automatically reduces the input to a minimum in which

all characters are relevant for producing the bug. The amount by

which the search space is reduced, however, depends more on the

input (which may contain more or less relevant characters) than

the actual approach.

This is more suitable for Alhazen, as Alhazen also works on

input representations. However, we do not minimize an existing

input, as delta debugging does, instead we report which parts of

input structure are relevant. We do not yet know how to present

this information to developers, but we assume that a model which

reports a small part of the underlying grammar allows the developer

to focusmuchmore. Smaller is less complicated, and therefore easier

to interpret.

For evaluating how much Alhazen can help in reducing the

search space, we therefore introduce a measure that is independent

of an implementation and independent of concrete inputs. In Table 6,

we have evaluated how many of the non-terminal symbols and

alternatives from the grammar occur in the decision tree. The idea

behind this is that each nonterminal and alternative in the grammar

stands for a specific concept; the fewer such concepts a programmer

has to deal with, the easier it will be for her to capture the specifics

of the bug, and eventually to fix it.

If the tree uses exists(⟨number⟩) in one node andmax(⟨number⟩)

in another one, this will be counted as one nonterminal symbol,

⟨number⟩, the programmer will have to deal with as a relevant

conceptÐin contrast to ⟨string⟩, ⟨loop⟩ and several more that do

not occur in the tree and thus are deemed irrelevant for the bug.

We see that on average, the decision tree makes use of only

3.62% of nonterminals, and only 4.86% of alternatives in the respec-

tive grammar. In other words, whatever happens with 96.38% of

nonterminals is irrelevant for the respective failure to occur. This

means that programmers can indeed focus on a small percentage

of relevant input features.

The decision trees produced by Alhazen allow programmers to

focus on less than 5% of input features.

The actual percentage highly depends on the size of the grammar.

For calculator.1, which uses the grammar in Figure 2, 33.3% of

the grammar are marked as relevant; however, with such a small

Table 6: Tree size and % of grammar used per subject.

Bug #nodes #leaves % of grammar used
non-terminals alternatives

calculator.1 5.0 3.0 33.3 25.0

closure.1978 29.0 15.0 2.0 1.4
closure.2808 13.0 7.0 0.7 0.8
closure.2842 11.0 6.0 1.5 0.3
closure.2937 23.0 12.0 2.4 0.8
closure.3178 38.0 19.5 2.9 1.7
closure.3379 25.0 13.0 1.5 1.4

find.07b941b1 3.0 2.0 0.5 0.1
find.091557f6 28.0 14.5 4.1 0.8
find.24bf33c0 20.0 10.5 4.1 0.5
find.b445af98 19.0 10.0 4.1 0.4
find.dbcb10e9 3.0 2.0 0.0 0.1
find.e1d0a991 33.0 17.0 6.0 0.8
find.ff248a20 35.0 18.0 4.1 1.0

genson.120 18.0 9.5 23.3 23.7

grep.2be0c659 41.0 21.0 6.5 1.2
grep.3220317a 18.0 9.5 2.2 0.7
grep.3c3bdace 11.0 6.0 2.2 0.3
grep.55cf7b6a 33.0 17.0 4.7 1.1
grep.5fa8c7c9 7.0 4.0 0.9 0.2
grep.7aa698d3 11.0 6.0 2.2 0.3
grep.c1cb19fe 23.0 12.0 5.6 0.5
grep.c96b0f2c 16.0 8.5 2.2 0.3

rhino.385 11.0 6.0 1.3 0.4
rhino.386 13.0 7.0 1.1 0.6

Average 19.48 10.24 3.62 4.86

⟨unicode_no_minus⟩ = "U+0130"?

✔

no

len(⟨start⟩) ≤ 66?

yes

✔

yes

⟨lc_all⟩ = "en_US.UTF-8"?

no

✔

no

⟨first_inputchar⟩ = "\"⟨digit⟩⟨digit⟩⟨digit⟩

yes

len(first_inputchar) ≤ 3?

no

len(inputstring) ≤ 35?

yes

✘

yes

✘

no

✘

yes

✔

no

Figure 9: Decision tree for grep.7aa698d3.

grammar, this means two non-terminal rules. For the largest gram-

mar in our selection, JavaScript (used with Closure and Rhino),

Alhazen can reduce the relevant elements to 1.67% on average.

5.5 Limitations

While allowing programmers to focus on specific aspects, the in-

ferred decision trees can still be complex. This reflects the complex-

ity of the underlying bugs, which in turn also shows the limits of

our approach. In fact, the bugs in our evaluation have non-trivial
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descriptions even in natural language, and this complexity is also

reflected in the decision trees: As we see in the first two columns of

Table 6, the average decision tree has about 20 nodes and 10 leaves.

The tree in Figure 9 for grep.7aa698d3 is a typical example

reflecting complex conditions. The actual bug occurs with all char-

acters where the unicode representation of the lower case variant

has fewer bytes than the representation of the upper case variant.

Since our tree can only use numeric comparisons of unicode

code points, it cannot fully capture this complex condition (short of

listing all characters with this property; note that Unicode charac-

ters with this property are not in a continuous area of the Unicode

representation.). Instead, the tree checks for the single unicode char-

acter "U+0130" (I-with-dot) for which the above condition holds.

This, of course, is an overspecialization.

The notation "\" ⟨digit⟩ ⟨digit⟩ ⟨digit⟩ is an alternative for how

unicode characters can be encoded, so the tree re-iterates that there

should be a unicode character in the input.4

To more precisely capture the failure condition, as above, one

would again have to provide Alhazen with specific features to

check forÐin our case, a vocabulary over external and internal

Unicode properties. But evenwith the tree being imperfect, it clearly

points to the correct featuresÐnamely the one important Unicode

character as well as the Unicode context. Both of these are very

relevant features (out of several hundred in the grep input grammar)

for understanding the circumstances of the failure, and provide

important hints for fixing it.

For best results, the set of input features used by Alhazen

should be adapted to the functionality of the program under test.

5.6 Threats to Validity

In Section 5.3 we use the same algorithm to generate inputs as in

Alhazen’s iterations. If there is some property of the producer that

leads to properties of the generated input that are not described

in the decision trees, this would have a positive influence on our

results. One such property could be that our producer always tries

to minimize the derivation sequences. We are not aware of any

other producer that could generate samples from a grammar and

a predicate, so there is currently no alternative to this evaluation.

At the same time, our claim is that Alhazen can help to generate

more inputs which trigger the desired behavior, which is true even

if it works only with our producer.

6 RELATED WORK

Grammars and Grammar Mining. The key ingredient to Al-

hazen is a grammar, used for (1) extracting features from the input

by parsing it; and (2) generating additional inputs for refining and

refuting hypotheses. The double usage of grammars as parsers and

producers is well-known in the literature. What is new in Alhazen,

4What we also see are three len predicates in the tree. The first one captures the fact
that you need a minimum length of 66 in our setting to have a unicode character
passed as an argument. The other two are cases of coincidental correlationÐthat is,
features that happen to match all observations so far, but which have not been refuted
by our generation algorithm yet. These features do not significantly impede prediction
or production accuracy, however, and would be eliminated with an increasing number
of iterations.

though, is the generic usage of a grammar to learn features for

machine learning and debugging, as well as the combination of

parsing and producing as embodiment of the scientific method.

Recent developments in mining grammars from programs [12, 17,

19] might considerably reduce the effort of writing the required

grammars. Parser-directed test generation [25] can eliminate the

need for sample inputs to learn grammars from.

Input Reduction. Input Reduction refers to techniques that auto-

matically determine a subset of the input that still reproduces the

failure; such simplification is an important prerequisite for debug-

ging. Delta debugging [37] is the earliest and simplest technique for

reducing inputs; going through a number of tests, it reduces any

input to a minimum in which removing any character no longer

causes the failure. Later variants of input reduction combine delta

debugging with grammars for faster reduction [26, 31] or are set

up to simplify complex input languages [36].

Alhazen shares a number of ideas with input reduction, notably

(1) the goal of eliminating circumstances that are irrelevant for the

failure; (2) the concept of working on system input; and (3) the idea

of refining or refuting hypotheses via generated tests. There are

two core differences, though. First, Alhazen can create theories

from observations only, without the need for executing additional

tests. Second, Alhazen generalizes over reduction techniques in

that the result is not one single simplified input, but a model for a

set of inputs that explains and reproduces the failure.

Statistical Fault Localization. Statistical fault localization [21,

24, 35] searches for statistical associations between program failures

and program runtime failures, notably the execution of specific code

locations. Given a sufficiently large number of executions, a small

set of lines executed only in failing runs may be determined, making

these natural candidates for further investigation or even fixes.

While the usefulness of statistical fault localization for programmers

is disputed [27], the given locations make important starting points

for automated repair techniques [23, 33].

Chen et al.[14] use a decision tree to learn which component in

a large internet site causes a specific failure. This is close to our

approach, in that it uses decision trees, but still a (kind of) fault

localization, as a specific component within a multi-component

system is identified.

Just like statistical fault localization, Alhazen creates associations

involving program failures. However, the Alhazen associations

refer to features of the input, which is an important conceptual

difference. Since input features refer to the problem domain and

are independent of a given implementation, they may be easier to

understand than code locations without any context.

A second important conceptual difference is that Alhazen allows

for refining or refuting hypotheses through test generation; this is

possible as it uses its grammar as producer. In practice, this means

that Alhazen can start with a single failing run only. A similar

feature for statistical fault localization would require the ability

to generate tests that execute or do not execute a particular line,

which is hard in practice and undecidable in general.

Holmes[20] also uses test generation to create more tests similar

to a failing test, but does so on pure luck: There is no systematic

exploration of hypothesis. Rößler et al. [30] combine statistical fault

localization with test case generation, and therefore systematically
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test hypothesis. They, however, still work on source code, rather

than inputs.

Dynamic Invariants. Dynamic invariants are properties inferred

over observations in a given set of program runs. If the argument x

to sqrt(x) is always non-negative, for instance, a dynamic invari-

ant detector like DAIKON [16] can infer the precondition candidate

x ≥ 0. DAIKON achieves this by starting with a large set of potential

invariants, keeping only those that apply in all runs.

Like dynamic invariants, Alhazen generates abstractions that ap-

ply in a set of runs; its predicates, however, apply to input elements

rather than function arguments and return values; this also gives

Alhazen the ability to generate additional tests as needed, which is

not easily possible for dynamic invariant generation. However, the

Alhazen predicates at this point only involve the presence of spe-

cific elements or production alternatives. A wider set of features as

with DAIKON, including arithmetic, set, and string properties over

input elements, could dramatically improve the diagnostic capabili-

ties of AlhazenÐalbeit at the expense of making test generation

more difficult.

7 CONCLUSION AND FUTUREWORK

Learning how input features determine program behavior, as Al-

hazen does, opens new perspectives for program understanding

and debuggingÐnot only characterizing the circumstances under

which a program fails, but also predicting failures for given inputs

as well as producing additional inputs that cause failures. Our eval-

uation shows that Alhazen performs all of these tasks with high

accuracy, demonstrating the potential of the approach.

We see Alhazen as a big step towards better debugging, but also

as a platform and opportunity for lots of further research. Future

work includes:

Domain-specific features. The łvocabularyž that Alhazen can

use to characterize failure circumstances is intentionally limited

to the very syntactical and numerical basics. Adding more fea-

tures that cater to the domain of the program at hand could yield

much crisper, and possibly even more precise failure character-

istics. The challenge is to strive a balance between generality

and specificity.

Explainable AI. As the program under test can be arbitrary large

or obscure, Alhazen can also be used to produce explanations

for the behavior of artificial intelligence systems; again, one

would need domain-specific features that help distinguishing

behavior.

Efficient refinement. We are exploringmore sophisticated meth-

ods for testing hypotheses that systematically cover language

features.

Intercorrelated features. In a grammar, several features intercor-

relate with each other: In our expression example, a ⟨number⟩

can only occur if a ⟨function⟩ occurs as well. The learner can

settle on either of these to distinguish passing from failing runs;

such choices, however, may impact performance and diagnostic

quality of the resulting trees.

Alternate learners. While decision trees can be easily read by hu-

mans, other machine learners, such as SVMs or neural networks,

could capture failure circumstances much more precisely. The

challenge will be to use these learners to generate additional

inputs to refine hypotheses, and to extract human-readable

descriptions of failure circumstances.

Program analysis. Guidance from static or dynamic program

analysis could greatly enhance hypothesis forming and testing.

Beyond failures. The diagnostic capabilities of Alhazen easily

extend to arbitrary program behaviorsÐsuch as the circum-

stances under which a particular resource is accessed, a data

flow takes place, a function is covered, memory is exhausted,

and many more.

Alhazen and all experiments described in this paper are avail-

able for replication and extension. For review purposes, we have

compiled a replication package[22] with all code and data at

https://zenodo.org/record/3902142
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