
Abstracting Failure-Inducing Inputs

Rahul Gopinath
rahul.gopinath@cispa.saarland
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

Alexander Kampmann
alexander.kampmann@cispa.saarland

CISPA Helmholtz Center for
Information Security
Saarbrücken, Germany

Nikolas Havrikov
nikolas.havrikov@cispa.saarland
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

Ezekiel O. Soremekun
ezekiel.soremekun@cispa.saarland

CISPA Helmholtz Center for
Information Security
Saarbrücken, Germany

Andreas Zeller
zeller@cispa.saarland

CISPA Helmholtz Center for
Information Security
Saarbrücken, Germany

ABSTRACT

A program fails. Under which circumstances does the failure occur?

Starting with a single failure-inducing input (łThe input ((4))

failsž) and an input grammar, the ddset algorithm uses systematic

tests to automatically generalize the input to an abstract failure-

inducing input that contains both (concrete) terminal symbols and

(abstract) nonterminal symbols from the grammarÐfor instance,

ł((⟨expr⟩))ž, which represents any expression ⟨expr⟩ in double

parentheses. Such an abstract failure-inducing input can be used

(1) as a debugging diagnostic, characterizing the circumstances under

which a failure occurs (łThe error occurs whenever an expression

is enclosed in double parenthesesž); (2) as a producer of additional

failure-inducing tests to help design and validate fixes and repair

candidates (łThe inputs ((1)), ((3 * 4)), and many more also

failž). In its evaluation on real-world bugs in JavaScript, Clojure, Lua,

and UNIX command line utilities, ddset’s abstract failure-inducing

inputs provided to-the-point diagnostics, and precise producers for

further failure inducing inputs.

CCS CONCEPTS

· Software and its engineering→ Software testing and debug-

ging; · Theory of computation → Grammars and context-free

languages; Active learning.
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1 INTRODUCTION

Having to deal with software failures is the daily bread of software

developersÐfrequently during development and testing, (hopefully)

less so during production. Since failures are caused by concrete in-

puts, but must be fixed in abstract code, developers must determine

the set of inputs that causes the failure, such that the fix applies to

precisely this set. This is important, as an incorrect characterization

leads to incomplete fixes and unfixed bugs.

As an example, consider a calculator program that fails given

the input in Fig. 1a. To identify the set of failure-inducing inputs,

the developer must ask herself: Is the error related to parenthesized

expressions? Any parenthesized expression? Doubled parentheses?

Or just nested parentheses? Or is the error related to addition,

multiplication, or the combination of both? Each of these conditions

induces a different set of inputs, and to fix the bug, the developer has

to identify the failure-inducing set as precisely as possibleÐtypically

following the scientific method through a series of experiments,

refining and refuting hypotheses until the failure-inducing set is

precisely defined.

1 + ((2 * 3 / 4))

(a) Failure-inducing input

((⟨expr⟩))

(b) Abstract failure-inducing input

Figure 1: Input for the calculator program.

⟨start⟩ ::= ⟨expr⟩

⟨expr⟩ ::= ⟨int⟩ | ⟨var⟩

| ⟨prefix⟩ ⟨expr⟩ | "(" ⟨expr⟩ ")" | ⟨expr⟩ ⟨op⟩ ⟨expr⟩

⟨op⟩ ::= " + " | " - " | " * " | " / "

⟨prefix⟩ ::= "+" | "-"

⟨int⟩ ::= ⟨digit⟩⟨int⟩ | ⟨digit⟩

⟨var⟩ ::= ⟨chars⟩⟨char⟩ | ⟨chars⟩

⟨digit⟩ ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

⟨char⟩ ::= "a" | "b" | "c" | "d" | "e" | "f"

Figure 2: Simple expression grammar
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In this paper, we present an approach that fully automates the

process of characterizing failure-inducing inputs. The ddset al-

gorithm1 starts with a single failure-inducing input (such as the

one above), a precise characterization of the failure and an input

grammar (in our case, representing arithmetic expressions, as in

Fig. 2). Using these three, it runs a number of experiments (tests)

to derive an abstract failure-inducing input that abstracts over the

original input, replacing concrete terminal symbols (characters) by

abstract nonterminals from the grammar. In our example, such an

abstract failure-inducing input produced by ddset would be the

one in Fig. 1b, where ⟨expr⟩ is actually any expression as given by

its grammar expansion rule. Formally, an abstract failure-inducing

input represents the set of all inputs obtained by expanding the

nonterminals it containsÐfor Fig. 1b, any expression contained in

double parentheses.

Can we determine that all expansions are failure-inducing? This

would require a fair amount of symbolic analysis, and be undecid-

able in general. Instead, ddset exploits the fact that the abstract

failure-inducing input can be used as a producer of inputs. ddset

thus instantiates it to numerous concrete test inputs; the abstract

failure-inducing input is deemed a valid abstraction only if all its

instantiations reproduce the original failure.

The concept of an abstract failure-inducing input and how to

determine it are the original contributions of this paper. Such an

abstract failure-inducing input can be used for:

Crisp failure diagnostics. Abstract failure-inducing inputs such

as ((⟨expr⟩)) precisely characterize the condition under

which the failure occurs: łThe failure occurs whenever an

expression is surrounded by double parenthesesž. Their sim-

plicity is by construction, as they are at most as long (in

the number of tokens) as the shortest possible input that

reproduces the failure. Should a developer prefer a number

of examples rather than the abstraction, an abstract failure-

inducing input can be used to produceminimal inputs similar

to delta debugging [19]; in our case, this would be inputs

such as ((0)), ((1)), etc.

Producing additional failure-inducing inputs. In manual de-

bugging as well as automated repair, a common challenge

is to validate a fix: How do we know we fixed the cause

and not the symptom? An abstract failure-inducing input as

produced by ddset can serve as producer to generate several

inputs that all trigger the failure. In our case, these would

include inputs such as ((1)), ((-3)), ((5 + 6)), ((8 * (3

/ 4))), (((9) * (10))), or ((11 / 12 + -13)). All these

inputs trigger the same original failure, and any fix should

address them all. A badly designed fix that would cover only

a subset (say, some single symptom of the original input

such as łno digits with two levels of parenthesisž) would be

invalidated in an instant.

How does ddset produce an abstract failure-inducing input?

ddset uses the given input grammar (e.g. Fig. 2) to parse the input

into a derivation tree, representing the input structure by means

of syntactic categories; Fig. 3 shows the derivation tree for our

example. ddset then applies the following steps:

1DDSET = Delta debugging for input sets

⟨start⟩

⟨expr⟩

⟨expr⟩

⟨int⟩

⟨digit⟩

"1"

⟨op⟩

" + "

⟨expr⟩

"(" ⟨expr⟩

"(" ⟨expr⟩

⟨expr⟩

⟨expr⟩

⟨int⟩

⟨digit⟩

"2"

⟨op⟩

" * "

⟨expr⟩

⟨int⟩

⟨digit⟩

"3"

⟨op⟩

" / "

⟨expr⟩

⟨int⟩

⟨digit⟩

"4"

")"

")"

Figure 3: A derivation tree for 1 + ((2 * 3 / 4))

(1) Reduction. ddset first reduces the input to aminimal failure-

inducing input. As the input grammar is available, we can

make use of efficient syntax-based reduction [18] rather than

lexical delta debugging [19]. For effective reduction, these

algorithms require a precise test condition that either

(a) identifies that the input produced was semantically invalid

(b) identifies that the input while semantically valid, but,

failed to reproduce the error, or

(c) identifies that the input succeeded in reproducing the

failure.

In our case, the input ((3)) is the result of reducing 1 +

((2 * 3 / 4)).

(2) Abstraction. Even given a simplified input such as ((4)),

we do not know which elements cause the failureÐis it the

first parenthesis, both of them, or the number 4? To deter-

mine this, ddset makes use of the same test procedure used

by the reduction step, ddset uses this test procedure to deter-

mine which concrete symbols can be replaced by other input

fragments while still producing failures. In our case, it turns

out that in the derivation tree of ((4)) (Fig. 5), the symbol

4 can actually be replaced by any ⟨digit⟩, ⟨int⟩, and even

⟨expr⟩; any expansion still produces failures. As a result, we

obtain the derivation tree in Fig. 6, which expands into the

concrete failure-inducing input. Hence, we characterize the

abstract failure-inducing input as ((<expr>)).

(3) Isolating Independent Causes. Say the input was ((1))

+ ((2 * 3)) - ((5)) and the failure cause was at least a

pair of doubled parenthesis. Then, a naive abstraction will

find the following fragments can be replaced by arbitrary

expressions ⟨expr⟩ + ((2 * 3)) - ((5)), ((1)) + ⟨expr⟩

- ((5)), and ((1)) + ((2 * 3)) - ⟨expr⟩ while still
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inducing failures. This will lead to the erroneous conclusion

that the final abstraction is ⟨expr⟩ ⟨op⟩ ⟨expr⟩ ⟨op⟩ ⟨expr⟩.

Our isolation step will correctly extract ((⟨expr⟩)) ⟨op⟩

((⟨expr⟩)) ⟨op⟩ ((⟨expr⟩)). Steps 2 and 3 work recursively

until all independent causes are identified.

(4) Sharing Abstraction. Given an input as a + a, with the

failure condition being the repetition of a variable, the pre-

vious abstraction and isolation steps will find that the first

variable a cannot be replaced with another arbitrary variable.

The sharing abstraction step identifies such parts and veri-

fies that all such parts can together be replaced by a shared

abstraction. The resulting abstract failure-inducing input

⟨$var1⟩ ⟨op⟩ ⟨$var1⟩ precisely identifies ⟨$var1⟩ as a string

that is shared.

(5) Handling Lexical Tokens. A number of programming lan-

guages use lexers that skip over whitespace and comments.

Further, program syntax may include optional elements such

as annotations that are present in the derivation tree2 and

hence, the abstract pattern derived resolves to an empty

string in the minimized input string. Finally, due to the way

parsers and lexers work, tokens such as begin are repre-

sented by a nonterminal element such as ⟨BEGIN ⟩, which

can have only a single possible value. As these do not help

developers, we identify these elements and replace them

with their value in the compact representation.

The result of these steps is a derivation tree where abstract,

shared and invisible nodes are marked, and a compact representa-

tion of this derivation tree as an abstract failure-inducing input. The

compact representation is useful for developers while the derivation

tree can be used as a producer for inputs.

In all that, the abstract failure-inducing inputs produced by

ddset capture dependencies even for complex input languages.

Fig. 4a shows a failure-inducing input for the Rhino JavaScript in-

terpreter. Fig. 4b shows its abstract representation as produced by

ddset. We see that instead of baz, we can have any identifier (as

long as it is shared) and any variable declaration. The instantiations

of this abstraction can produce numerous test cases that all help

ensuring a proper fix.

In the remainder of this paper, we follow the steps of our ap-

proach, detailing them with the calculator example. After intro-

ducing central definitions (Section 2), we detail the steps of ddset,

namely reduction (Section 3), abstraction (Section 4), isolation (Sec-

tion 5) identifying shared parts (Section 6), and identifying invisible

elements (Section 7). We discuss properties and limitations of ddset

(Section 9). In our evaluation (Section 10), we apply ddset on a

range of bugs and subjects, assessing its effectiveness. After dis-

cussing threats to validity (Section 11) and related work (Section 12),

Section 13 closes with conclusion and future work.

2 DEFINITIONS

In this paper, we use the following terms:

Input. A contiguous sequence of symbols fed to a given program.

That is for our example, 1 + ((2 * 3 / 4)), the symbols

"1" " + " "(" "(" "2" " * " "3" " / " "4" ")" ")"

form our input.

2These are marked as SKIP in ANTLR grammars.

Alphabet. The alphabet of the input accepted by a given program

is the set of all non divisible symbols that the program can

accept. In our example, the digits ("0" to "9"), operators

( " + " " - " " * " " / " ), prefixes ("+" "-") and

parenthesis ("(" ")") forms the alphabet.

Terminal. An input symbol from the alphabet. These form the

leaves of the derivation tree. For example, "2" is a terminal

and so is " + ".

Nonterminal. A symbol outside the alphabet that has a grammar

definition. These form the internal nodes of the derivation

tree. From our example, ⟨expr⟩ is one of the nonterminals.

Context-Free Grammar. A set of recursive rules that is used to

describe the structure of input. The context-free grammar

is composed of a set of nonterminals and corresponding

definitions that define the structure of the nonterminal. Each

definition consists of multiple rules that describe alternative

ways of defining the nonterminal. Fig. 2 describes a context-

free grammar for an expression language.

We assume that the context-free grammar is given, and that

it can parse the input to a3 derivation tree4.

Rule. A finite sequence of terminals and nonterminals that de-

scribe an expansion of a given nonterminal. For our example,

⟨expr⟩ ::= ⟨expr⟩ ⟨op⟩ ⟨expr⟩ is one of the rules that defines

the nonterminal ⟨expr⟩ in the grammar.

Derivation Tree. A derivation tree is an ordered tree that describes

how an input string is parsed by the rules in the grammar.

Fig. 3 shows a derivation tree built by parsing 1 + ((2 * 3

/ 4)) using the context-free grammar in Fig. 2.

Predicate. A test predicate determines if the given input is able to

reach and reproduce the failure condition. If the input was

not legal, that is, the input is invalidated by checks on the

input before the predicate is reached, then the result is seman-

tically UNRESOLVED. If the input reaches the predicate, and

the failure condition is reproduced, the result is FAIL. If not,

the result is PASS. Note that at all times, inputs are syntacti-

cally validÐthat is, each input conforms to the context-free

grammar. These follow the original definitions [19].

Compatible Node. A node is compatible to another if both have

the same nonterminal. E.g. the root node for the expression 2

* 3 is an ⟨expr⟩. Similarly, the root node for the expression

2 * 3 / 4 is also an ⟨expr⟩. Hence, these two nodes are

compatible.

Compatible Tree. A tree is compatible to another if both have

compatible root nodes.

Generated Compatible Tree. One may randomly generate com-

patible trees given a nonterminal by the following production

process:

(1) Stochastically choose one of the rules from the definition

corresponding to the nonterminal. The terminals and non-

terminals in the rule form the immediate children of the

root node of the generated tree.

3We assume that there is one canonical derivation tree. That is, no ambiguity, or
in the case of ambiguity, and all derivation trees are semantically valid, we simply
choose one tree. If not all derivation trees are semantically valid, we assume that there
exists a procedure to identify the correct tree.

4If not, there are two choices: fix the input or the grammar. A technique like
lexical ddmax would isolate the failure-inducing input in context and give sufficient
hints to debug the input or the grammar such that the input can be parsed.
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1 var {baz: baz => {}} = baz => {};

(a) Failure-inducing input

var {⟨$Id1⟩:⟨$Id1⟩ => {} } = ⟨variableDeclaration⟩;

(b) Abstract failure-inducing input for Fig. 4a

Figure 4: Issue 385 of the Rhino JavaScript interpreter.

(2) For each nonterminal in the rule, stochastically choose a

rule from the corresponding definition in the context-free

grammar.

(3) Continue the process until no nonterminals are left.

Generated String. Given a randomly generated compatible tree,

the corresponding string representation is called the gener-

ated string. There can be an infinite number of generated

strings corresponding to a nonterminal if the nonterminal is

recursive (i.e the nonterminal is reachable from itself).

Reachable Nonterminal. A nonterminal a is reachable from an-

other nonterminal b if a is reachable from any of the rules in

the definition of b. A nonterminal is reachable from a rule if

(1) that nonterminal is present in the rule or

(2) that nonterminal is reachable from any of the nontermi-

nals in the rule.

From our expression grammar, the nonterminal⟨op⟩ is reach-

able from the nonterminals ⟨expr⟩ and ⟨start⟩. The nonter-

minal ⟨expr⟩ is reachable from itself and ⟨start⟩.

Subtree. For any given node in a tree, a subtree refers to the tree

rooted in any of the reachable nonterminals from that node.

String Representation. For any given subtree, the corresponding

string representation is the string fragment from the original

input that corresponds to the subtree.

Compact Representation. For any given tree, the corresponding

compact representation is the abstract string representation

where the string representation of nodes marked as abstract

are the corresponding nonterminal, shared nodes are repre-

sented by a parametrized nonterminal, and invisible nodes

are represented by their corresponding string.

1-minimal Input. An input string is 1-minimal if the predicate

indicates that the string causes the failure, and removing any

one symbol from the input no longer causes the failure.

1-minimal-tree Input. An input has a 1-minimal-tree as its deriva-

tion tree if there is no node in the derivation tree that can

be further simplified by the given reducer. Note that the

definition of 1-minimal-tree is dependent on the reduction

algorithm used.

3 REDUCTION

Let us now get into the details of ddset. As discussed in Section 1,

ddset starts with reducing the given input to a minimal input. As a

reminder, as input to ddset, we have

• the predicateÐin our case, a program that fails whenever

there are doubled parentheses in the input. For the sake of

simplicity, we assume that the łcalculatorž program simply

matches the input against a regular expression

/.*[(][(].*[)][)].*/

Ðthat is, it will fail on any input that contains a pair of open-

ing and closing double parentheses, and pass otherwise.

• the failure-inducing inputÐin our case, the input

1 + ((2 * 3 / 4))

• the input grammar, as shown in Fig. 2.

ddset uses the Perses reducer from Sun et al. [18]. We provide a

brief overview of the Perses reducer. We first parse the input using

the grammar provided, which results in a derivation tree (Fig. 3).

The reduction algorithm (Algorithm 1) accepts this derivation tree

and minimizes it to a minimal tree (Fig. 5).

Algorithm 1 The Perses reduction algorithm

function reduction(string, grammar, predicate)

dtree ⇐ parse(string, grammar)

p_q ⇐ priority_queue((dtree, ∅))

while p_q , ∅ do

dtree, path ⇐ p_q.pop()

snode ⇐ dtree.get(path)

trees ⇐ ∅

compatible_nodes ⇐ snode.get_all_nodes(snode.key)

if ∅ ∈ grammar[snode.key] then

compatible_nodes.append(∅)

end if

for node ∈ compatible_nodes do

ctree ⇐ dtree.replace(path, node)

if predicate(ctree.to_s) == FAIL then

trees.append((ctree, path))

end if

end for

if trees , ∅ then

tree ⇐ minimal(trees)

p_q.insert(tree, path)

else

for child ∈ nonterminals(snode.children) do

p_q.insert(dtree, child.path)

end for

end if

end while

return dtree

end function

We start by maintaining a priority queue of tuples. The first

item in the tuple is a derivation tree and the second item in the

tuple is a path to a particular node in that derivation tree. We next

add the full derivation tree and a path to the root node (t0, p0) as

the first item in the priority queue. The tree priority is determined

by the number of terminal symbols (leaf nodes) on the derivation

tree, followed by number of terminal symbols on the subtree that

is indicated by the path. That is the shortest token sequence is at

the top of the priority queue.

Next, ddset performs the following steps in a loop.

(1) Extract the top tuple. It contains a complete derivation tree

and the path to a subtree from that tree.
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⟨start⟩0

⟨expr⟩1

"(" ⟨expr⟩2

"(" ⟨expr⟩3

⟨int⟩4

⟨digit⟩5

"4"

")"

")"

Figure 5: The derivation tree for ((4)). Nodes are annotated

with numbers for easier reference.

(2) Given the subtree, identify the compatible reachable nodes

from the root node of the subtree, ordered by their depth

(shallowest first). These are alternative trees that we can re-

place the current subtree with a high chance of reproducing

the failure. If the grammar allows the current node to be

empty, then an empty node is added to the compatible nodes

with a depth 0.

(3) For each tree in the alternative, replace the current tree with

the tree in the alternative producing a new derivation tree.

Collapse the new derivation tree to its corresponding string

representation, and check if the predicate confirms reproduc-

ing the failure. Collect every such alternative tree, and iden-

tify the tree that produces the smallest input (minimal()).

Generate tuples for this tree Ð the first element is the deriva-

tion tree corresponding to the new input string, and the path

is the same as the current path. Add this tuple to the priority

queue. If we could find a smaller input in this step, go back

to the first step.

(4) If no smaller inputs could be found, generate new tuples

by using the same derivation tree, but with paths that cor-

respond to the children of the current node. Add the new

tuples to the priority queue. Then go back to the first step.

(5) The loop ends when the priority queue is empty.

At this point, we will have a minimal input where the predicate

reproduces the failure.

4 ABSTRACTION

Abstraction is the process of identifying the causative parts that

contributed directly to the failure observed, and identifying and

abstracting the non-causative parts. For abstraction, the idea is to

identify which parts of the given derivation tree are required to

produce a failure, and which parts can be replaced by a random

generated string.

The algorithm is as follows. We start with the derivation tree

that corresponds to the input string.

(1) Identify the nonterminal of the top node of the tree.

(2) Generate N random generated trees that correspond to the

nonterminal where N is user configurable, and determined

by the accuracy desired.

⟨start⟩0

⟨expr⟩1

"(" ⟨expr⟩2

"(" ⟨expr⟩∗ ")"

")"

Figure 6: The abstract derivation tree for ((4)). The abstract

nodes are marked with ‘*’.

(3) For each generated tree, obtain the full input string from the

full derivation tree where the current tree is replaced by the

generated tree.

(4) For each such string, check if predicate responds with FAIL.

If for any generated tree, the predicate responds with PASS,

then the tree cannot be abstracted. If all checked alterna-

tives result in FAIL, we assume the tree can be abstracted.

If predicate responds with UNRESOLVED, then the input

failed to validate. We can only make the distinction between

concrete and abstract using semantically valid inputs. Hence,

we ignore the inputÐthat is, we do not consider this input

among the N random inputs, and generate a new input to try

again.

(5) If the tree can be abstracted, add the path to this node to

abstract nodes.

(6) If the tree cannot be abstracted, then continue the same

procedure with its nonterminal children.

Using our example derivation tree at Fig. 5, we first consider ab-

stracting ⟨start⟩0. The generated strings for ⟨start⟩0 contain strings

such as 100, 2 + 3 etc. These result in PASS from the predicate. That

is, ⟨start⟩0 cannot be abstracted, and hence, marked as concrete. Sim-

ilarly, ⟨expr⟩1, also cannot abstracted, and marked as concrete. Con-

sidering ⟨expr⟩2, all generated strings produced are parenthesized.

However, only a few are double parenthesized. Hence, ⟨expr⟩2 is

also marked as concrete. Considering ⟨expr⟩3, all generated strings

produced are of the form /((.*))/ which successfully triggers the

predicate. Hence, the path to ⟨expr⟩3 is added to abstract nodes. This

results in the abstract derivation tree in Fig. 6.

This sequence of steps produces an annotated derivation tree

where each node is marked as either abstract or concrete. This ab-

stract derivation tree encodes what exactly caused the failure. In our

case, the abstract derivation tree generates the string ((⟨expr⟩)),

which clearly suggests the reason for failureÐdoubled parentheses.

5 ISOLATING INDEPENDENT CAUSES

Our abstraction algorithm introduced so far can fail when the failure

is caused by interaction of multiple syntactical elements. For exam-

ple, here is a minimized input string [7] for the closure JavaScript

compiler: { while ((l_0)) { if ((l_0)) { break;;var

l_0;continue }0 } } . The problem here is that one requires

exactly two instances of l_0 to reproduce the bug with the remain-

ing element allowed to be any syntactically valid identifier. So our

first algorithm will try replacing the first l_0, and succeed because

the other two instances are present in the string. Similarly, the

second and third l_0 will also be identified as abstractable because
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the first and second respectively are present in the strings gener-

ated. However, the abstraction generated { while ((⟨Id⟩)){ if

((⟨Id⟩)) { break;;var ⟨Id⟩;continue }0 } } is incorrect Ð the

failure would not be reproduced if all three are replaced by separate

identifiers.

To address this problem, we verify that each of the nodes identi-

fied as abstract on its own, continued to do so when other abstract

nodes are also replaced by randomly generated values. If the cur-

rent node is no longer abstract when other abstract elements are

replaced by randomly generated values, we unmark the current

node as abstract, and run the abstraction algorithm on the child

nodes, but with other abstract nodes replaced with random values.

The modified algorithm is given in Algorithm 2. The generate()

function when given a derivation tree, and a set of paths, generates

a new tree with all nodes pointed to by the paths replaced by a

random compatible node.

We note that isolating independent causes is a well known prob-

lem for variants of delta debugging [15, 16], and our algorithm

provides a solution if applied directly to non-reduced input (under

the constraint that the faults can be isolated to separate parts of the

input). That is, if the input to the algorithm contains two separate

faults, both faults will be concretized and retained in the output.

6 IDENTIFYING SHARING ABSTRACTION

The abstraction algorithm detailed before works well when the

examined parts are independent. However, complex languages often

have elements such as variable definition and references that should

be changed together.

As an example, Fig. 4a shows a failure-inducing input for the

Rhino JavaScript interpreter [13]. There are a few questions that

the developer may wish to answer here based on this fragment:

(1) We see two empty {}. Do these need to be empty?

(2) What exactly about the empty pattern is important here?

(3) Can they be other data structures?

(4) Is it required that the patterns are exactly the same?

(5) Can one reproduce the failure with a variable other than

baz?

(6) Do the three baz need to the exact same variable?

To further abstract such an input, we need to abstract over vari-

able namesÐbut in a synchronized fashion. To identify such patterns,

we start with the abstract derivation tree, and first identify all non-

terminals that are present in the derivation tree. Next, for each

nonterminal, we identify its nodes in the derivation tree, and group

the nodes based on the corresponding string representation. For any

such grouping which contains more than one node, we generate

compatible trees for that nonterminal and replace all the nodes in

that group with that tree. We then obtain the string representation

of the complete derivation tree and verify if the new string repro-

duces failure when the predicate is applied. If all such generated

strings can reproduce the failure, the particular nodes under this

grouping are parametrized by prefixing their nonterminal with a

"$" and suffixing it with a unique id for this group.

For example, say we have the following input int v=0; v=1/v

which induces an error (Fig. 7). The abstraction step will be unable

to abstract v, and nodes annotated e , k and q and their parent nodes

will be left concrete. Next, we look at the string representations of

Algorithm 2 The abstraction and isolation algorithms

function can_generalize(tval, dtree, grammar, predicate, rnodes)

checks ⇐ 0

while checks < MAX_CHECKS do

newtree ⇐ generate(dtree, grammar, [tval] + rnodes)

pres ⇐ predicate(newtree.to_s)

if pres = PASS then

return false

else

if pres = FAIL then

checks = checks + 1

end if

end if

end while

return true

end function

function abstraction(tval, dtree, grammar, predicate, rnodes)

path, status ⇐ tval

if dtree.get(path).is_terminal then

return []

end if

abstract ⇐ can_generalize(tval, dtree, grammar, rnodes)

if abstract then

if status = UNCHECKED then

return [(path, UNVERIFIED)]

else

return [(path, VERIFIED)]

end if

else

paths ⇐ ∅

for child ∈ nonterminals(snode.children) do

tval ⇐ (child.path, UNCHECKED)

paths.extend(abstraction(tval, dtree, predicate, rnodes))

end for

return paths

end if

end function

function isolation(tree, grammar, predicate)

unv ⇐ [(∅, UNCHECKED)]

verified ⇐ ∅

original ⇐ ∅

while unv , ∅ do

v ⇐ unv.shift()

notpv ⇐ filter(original, λo :!o.isparent(v))

topnodes ⇐ filter(notpv, λo :!ischildofany(o, notpv))

runverified ⇐ filter(unv, λo :!ischildofany(o, topnodes))

rnodes ⇐ runverified + topnodes

newpaths ⇐ abstraction(v, tree, grammar, predicate, rnodes)

for p ∈ newpaths do

if p[1] == VERIFIED then

verified.append(p)

else

unv.append(p)

end if

end for

original.append(v)

end while

return mark_verified(tree, verified)

end function
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⟨start⟩∗a
v=0;v=1/v

⟨statements⟩∗b
v=0;v=1/v

⟨statement⟩∗cv=0

⟨assign⟩∗dv=0

⟨lvar⟩∗ev

"v"

"=" ⟨expr⟩f

⟨int⟩д

⟨digit⟩h

"0"

";" ⟨statement⟩∗i
v=1/v

⟨assign⟩
∗j

v=1/v

⟨lvar⟩∗kv

"v"

"=" ⟨expr⟩∗l
1/v

⟨int⟩m

⟨digit⟩n

"1"

⟨op⟩i

"/"

⟨expr⟩
∗p
v

⟨name⟩
∗q
v

"v"

Figure 7: A derivation tree for int v=0; v=1/v. The concrete

nodes are annotated with ∗ and the string representation is

provided next to these nodes.

each nonterminal. For example, the node d has a string representa-

tion v=0whilek , e ,p, andq has the same string representation v. We

only collect string representations of concrete nodes (annotated by
∗ in Fig. 7). From the figure, we can see that the nodes a and b have

similar string representation Ð v=0;v=1/v similarly, c and d have

v=0, and e , k , p, and q have v and so on. Out of these, we eliminate

nodes that are a child of any of the other nodes in the grouping.

This eliminates b since it is a child of a, which also eliminates the

grouping since there is only one member left in the group.

This leaves us with one group, with members e , k , and p corre-

sponding to v. Next, we pick a randomly generated value for one of

the nodes; Say x, and use this value in place of each nodes, generat-

ing a new input string x=0;x=1/x. This string is now checked to

see if it induces the same failure. (Only values that are legal to be re-

placed in each node is used, and values that result in UNRESOLVED

are discarded). If the randomly generated value successfully repro-

duces the failure (as would happen in this case), we repeat the

procedure for a fixed number of times for statistical confidence. If

every such legal string induces the given failure, we mark the set

of nodes as shared.

What if we have a set of nodes with the same string repre-

sentation, but fails to vary together? E.g say we have an input

myval="myval"; check(myval). The input produces a failure if

a variable with value "myval" is passed to the function check().

Here, myval can be replaced by any legal variable name so long it

is correctly passed to check(). However, the string value has to

remain "myval". To handle such cases, we produce combinations

of nodes which are sorted by the number of nodes. That is, all nodes

are checked for sharing first. Then, combinations with one node

excluded are tried next, and then combinations with two nodes

excluded and so on (denoted by len_sorted_combinations()).

The first set of nodes that can vary together is chosen for a shared

name. If no such set is found, the entire grouping is discarded. The

complete algorithm is formalized in Algorithm 3.

Algorithm 3 Identify shared nodes

function identify_shared _nodes(tree, grammar, predicate)

cpaths ⇐ concrete_paths(tree)

snodes ⇐ find_similar(tree, cpaths)

mtree ⇐ tree

for key ∈ snodes do

plst ⇐ snodes[key]

paths ⇐ find_shared(plst, grammar, mtree, predicate)

if paths then

mtree = mark_context_sensitive(paths, mtree)

end if

end for

return mtree

end function

function concrete_paths(node)

if node.abstract then

return []

end if

my_paths ⇐ [node.path]

for cnode ∈ node.children do

my_paths = my_paths + concrete_paths(cnode)

end for

return my_paths

end function

function find_similar(tree, paths)

strings ⇐ ∅

for path ∈ paths do

node ⇐ tree.get(path)

s ⇐ node.to_s

if s.len = 0 then

continue

end if

strings[(node.key, s)].add(path)

end for

res ⇐ filter(strings, λs : strings[s].len() > 1)

return res

end function

function find_shared(plst, grammar, tree, predicate)

for paths ∈ len_sorted_combinations(plst) do

checked = 0

while checked < MAX_CHECKS do

val ⇐ generate(tree, paths, same = true)

res ⇐ predicate(val)

if res = PASS then

break

else

if res = FAIL then

checks = checks + 1

end if

end if

end while

if checked == MAX_CHECKS then

return paths

end if

end for

return ∅

end function
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The result of this step is the abstract failure-inducing input

shown in Fig. 4b. With this, the questions that we asked above

are immediately answered. First, we avoid ambiguity. The abstract

failure-inducing input clearly indicates that all that is required is

for the first two ⟨Id⟩ to be the same identifier (baz in the minimized

string) and the first {} to be present.

Second, the abstract failure-inducing input suggests that the

token ⟨variableDeclaration⟩ is effectively a space filler, as any in-

stantiation of ⟨variableDeclaration⟩ would do. It further indicates

precisely what portion of the processing program contributed to

the failureÐsomething related to the processing of the syntactical

elements ⟨Id⟩ and ⟨variableDeclaration⟩. This is an important infor-

mation which was not visible in the minimized input fragment. In

fact, this addresses a major drawback of current HDD variants as

pointed out by Regehr et al. [16] (generalized transformations) and

Pike [15] (sharing).

7 HANDLING LEXICAL TOKENS

In our last step, we tackle the distinction between lexical and syn-

tactical features. Input strings often contain lexical parts such as

whitespace and comments. These are often skipped over before

parsing. These elements hence do not contribute to the program

semantics. Showing that there is an abstract whitespace in between

any two elements hence is of little help to the developer who inter-

prets the abstract failure-inducing input.

Further, the abstract failure-inducing input may contain nonter-

minal symbols that represent optional parts of the grammar. These

can be parts such as type hints in Python, documentation annota-

tions, optional arguments to command lines that can be entirely

skipped etc. While these are important sources of variability when

the abstract failure-inducing input is used as a producer, a developer

may not care about the existence of these nonterminals. Hence, we

categorize them as invisible elements, and remove them from the

compact representation of the abstract failure-inducing input.

Finally, tokens such as begin and if may be represented by

nonterminal symbols such as ⟨BEGIN ⟩ and ⟨IF⟩. Since marking

them as abstract does not provide any value-add for the developers,

we identify such lexical tokens and replace them with their values

in the compact representation.

8 THE COMPLETE DDSET ALGORITHM

Algorithm 4 shows how all the components fit together. The initial

input is first parsed using a grammar, which results in a deriva-

tion tree. This derivation tree is passed to the reduction func-

tion, which minimizes the derivation tree to a 1-minimal-tree in-

put. The 1-minimal-tree is then passed to the isolation func-

tion. The isolation function in turn, uses abstraction to iden-

tify nodes that are independently abstract. Finally, the function

identify_shared_nodes identifies andmarks parts that are shared.

The tree thus produced is converted to a string representation and

returned.

9 PROPERTIES AND LIMITATIONS

Our ddset approach has a number of interesting properties and

limitations, which we list here.

Algorithm 4 Top level

function get_abstraction(grammar, myinput, predicate)

mtree ⇐ parse(myinput, grammar)

rtree ⇐ reduction(mtree, grammar, predicate)

itree ⇐ isolation(rtree, grammar, predicate)

ctree ⇐ identify_shared_nodes(itree, grammar, predicate)

return compact_rep(ctree)

end function

Approximation. In general, an abstract failure-inducing input

will be an approximation. The reason is that a context-free

grammar cannot fully characterize a universal grammar (that

is, a Turing machine). There are specific causes for approxi-

mation:

(1) During abstraction, if we are unable to generate any se-

mantically valid inputs, we give up, and mark the node as

concrete. This does not mean that the node cannot be gen-

eralized. Further, there may be other syntactical patterns

that produce the same bug, which is not captured in the

particular abstract failure-inducing input we derive from

the minimized input string. Both of these are causes for

underapproximation.

(2) We have a fundamental limitation in that we rely on ran-

domness to generate possible substitutes for particular

nodes, and it is possible that the random strategy was

unable to provide a counterexample in the time budget

allotted. In such cases, we may erroneously mark nodes

as abstract when they are not and overapproximate. This

risk can be limited by running more tests.

Limitations of Delta Debugging. Our approach inherits limita-

tions from delta debugging, such as reliance on a precise

test case [16] that may require knowledge about internal

program structure (such as a crash location). We also require

that the test case clearly distinguishes between FAIL and

UNRESOLVED, especially as several of the generated test

inputs may be valid syntactically, but invalid semantically.

Finally, we require that the test case be deterministicÐthat

is, the program behavior fully depends on the given input.

Grammar Quality. Like Perses and other HDD variants, ddset re-

lies on a grammar to reduce and abstract inputs. Since it uses

the grammar both for decomposing as well as for producing

inputs, it is important to have a high-quality grammar. If the

grammar is too lax, it will parse inputs well; many ANTLR

parsers err on this side. However, many of the produced in-

puts will be invalid, requiring the test to strictly separate

between FAIL and UNRESOLVED. If the grammar is too

tight, opportunities for generalization will be missed.

Performance. We note that ddset is computationally expensive.

In particular, in the worst case, each node in the derivation

tree contributes to N executions of the test case where N

is dependent on the desired accuracy. The number of nodes

in a derivation tree depends on the branching factor, and

can be approximated to O(nloд(n)) where n is the number

of tokens, and the base of the logarithm is the branching

factor. Furthermore, ddset may need to generate a number

of syntactically inputs for generating a single semantically
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valid input. If it required K syntactically valid inputs for one

semantically valid input, the worst case runtime complexity

of ddset would be O(K × N × n × loд(n)) where n is the

number of tokens in the input. The number of tests, however,

is in line with Delta Debugging on complex inputs; as ddset

would typically be started automatically after an automated

test has failed, there is no human cost involved.

At least as good as Delta Debugging. Despite the above limita-

tions, let us point out that ddset is at least as good as the

state of the art. Notably, its abstract failure-inducing inputs

are never longer than the reduced failure-inducing input.We

always start with the minimized input, and abstraction only

substitutes character sequences with single tokens. Hence,

the length of the result (counting each token as a single el-

ement) will never be more than the length of the original

minimized input. If there exists a better variant for HDD

than Perses, we can simply use that variant instead.

10 EVALUATION

To evaluate ddset, we pose the following research questions.

(1) RQ1 How effective is the ddset algorithm in generating ab-

stract failure-inducing inputs? That is, we want to know if

ddset algorithm can accurately identify abstractable pat-

terns in the given input, and whether identifying these pat-

terns can lead to an overall reduction in the complexity of

the input.

(2) RQ2 How accurate are the patterns generated by the ddset

algorithm? That is, did the algorithm correctly identify parts

that can be abstracted? Or were some parts mislabelled as

abstract?

10.1 Evaluation Setup

For our evaluation, we used subjects for four input languages, from

programming languages to command lines:

Javascript is a large language with numerous parser rules, key-

words, and other special context rules.We used the Javascript

grammar definition from theANTLR project [2], which corre-

sponds to the ECMAScript 6 standard. The ANTLR Javascript

grammar contains both lexical (lexer) and syntactical (parser)

specification. We used the following Javascript interpreters

in the evaluation:

• Closure interpreter v20151216, v20200101, and v20171203.

The bugs were obtained from the Closure issues page [8].

• Rhino interpreter version 1.7.7.2. The bugs for this project

were obtained from the Github issues page [14].

Clojure5 is a Lisp-like language with a limited set of parse rules

that describe the main language. We used the Clojure gram-

mar definition published by the ANTLR project [1] in 2014,

which still parses later versions of Clojure. The following

version was used for evaluation:

• Clojure interpreter version: 1.10.1. The bugs for this project

were obtained from Clojure JIRA [6].

Lua6 is a smaller language with a limited set parsing rules. We used

the Lua grammar definition from the ANTLR project [3]. The

following version was used for evaluation:

• Lua interpreter 5.3.5. The bugs for this project were ob-

tained from the project page [11].

UNIX command line utilities. For the UNIX command line util-

ities, we chose the two commands find and grep which were

published in the DBGBench [4] benchmark. The grammars

for find and grep command line options were extracted from

the manual pages. These grammars list which parts of the

command line are optional, and which parts accept argu-

ments. The syntax for arguments is also represented and

includes regular expressions and file names. The particular

coreutil bugs are identified by their hashes in DBGBench.

We converted each grammar from the ANTLR format to a pure

context free form by extracting optional and star patterns to sep-

arate grammar rules. For each bug, we read the bug report, and

identified the smallest input that was provided in the bug report

by the reporter or later commenter. Using this input, we translated

the bug behavior to a test case with the following properties:

• Successfully identify when the fault is triggered (FAIL).

• For complex languages (those except coreutils) the test case

should identify whether the semantic rules of the language

were fulfilled (PASS).

• Similarly, for complex languages, the test case should be able

to accurately identify when the semantic rules are violated,

leading to a rejection of the input (UNRESOLVED). This is

because, for languages such as Clojure, Javascript and Lua,

there is often a second stage after parsing where the program

is statically analyzed to identify errors. Hence, while accord-

ing to the grammar of Clojure, any parenthesized expression

can be placed anywhere, a developer normally expects a

specific kind of expression under, say, a parameter definition.

For coreutils, the UNRESOLVED indication was not used.

• Triggering the timeout (one minute) was counted as PASS.

10.2 RQ1: Effectiveness of Abstraction

The effectiveness of abstraction aims to capture how effective ddset

is in identifying non-essential filler parts. To measure the effective-

ness of abstraction, we assess the number of nonterminal symbols

that could be used in a given minimal string. This indicates the

amount of abstraction possible in that a nonterminal can be replaced

by any of its semantics conforming expansion. The remaining char-

acters in the string indicates what could not be abstracted in this

way, and indicates the limit of ddset.

Our results for abstraction are shown in Table 1:

• The Bug column contains the bug identifier in the particu-

lar bug tracking system the language uses. łrhino 385ž, for

instance, denotes the bug in Fig. 4a.

• The # Chars in Min String column reports the length of

the input string after it was minimized through the perses

reduction algorithm. This is our starting point.

• The # Visible Nonterminals column reports the number

of distinct nonterminals found by the abstraction algorithm

that are visible to the user in the abstract failure-inducing

inputÐ the more nonterminal symbols found, the better the

abstraction was, and the lower the cognitive load for the

developer. In the pattern for łrhino 385ž, shown in Fig. 4b,

we have three visible nonterminals.
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Note that the Nonterminal count does not include number

of nonterminal symbols for space, comments, and other lexi-

cally skipped parts of the program that are not part of the

semantics. Any space left after minimization is counted as

part of remaining characters. Secondly, any abstractable ele-

ment that resulted in an empty string is skipped.

• The # Invisible Nonterminals column denotes the num-

ber of nonterminal symbols that are invisible (because they

represent empty string or skipped space and comments).

We see that the abstract failure-inducing input in Fig. 4b

has 17 invisible nonterminals, denoting the spaces between

elements.

• Within the nonterminals, the number of shared nontermi-

nals is provided in the column # Shared. An item such as

2 + 3 indicates that two distinct shared nonterminals were

found, of which the first had a two references, while the

second had three referencesÐthe more such shared symbols

found, the better (even better than nonterminals found) as it

indicates areas of semantic importance, and hence, possible

places that the developer should focus on. For Fig. 4b, this

item is 2, which represents the single shared nonterminal

(⟨$Id1⟩) which appears twice. For lua-5.3.5.4, this is 3 + 2

which indicates one shared nonterminal that repeats thrice,

and another that repeats two times.

• The # Remaining Chars column reports the number of

characters left after removing the tokensÐfor Fig. 4b, these

are 7.

• Finally, the # Executions column reports the number of

executions required for the complete abstraction (including

minimization). It takes 14,015 executions of Rhino to obtain

the abstract failure-inducing input in Fig. 4b. We note that

the large number of executions is due to the high accuracy

desired, and the accuracy desired can be controlled by the

user.

In total, Table 1 shows that all 22 buts could be abstracted to

varying degrees. In particular, nine bugs had a number of shared

elements which should get extra attention from the developer. Any

of the abstract failure-inducing inputs stands for an infinite set of

inputs, which can all be used to generate more tests. Finally, the

table shows that ddset never does worse than the minimized input

it started with.

ddset could provide abstract failure-inducing inputs

for all 22 bugs studied.

While the number of executions may seem high, it is in line with

expectations (See łPerformancež in Section 9) and the state of the

art. It is also high because we used up to 100 test runs to validate

each abstraction step. Reducing this number to, say, 10, would much

increase performance, but also increase the risk of inaccuracy.

Users can choose between high accuracy

and a lower number of executions.

Table 1: The effectiveness of abstraction on reported bugs
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lua-5.3.5 4 83 5 54 3+2=5 28 19265

clj-2092 55 1 24 =0 11 505

clj-2345 34 1 12 =0 4 911

clj-2450 185 5 60 2=2 27 1954

clj-2473 29 2 18 =0 10 5118

clj-2518 30 0 20 =0 8 741

clj-2521 135 2 23 =0 10 864

closure 1978 84 10 37 3=3 11 17174

closure 2808 14 3 7 2=2 1 167

closure 2842 60 6 41 3+3=6 14 551

closure 2937 35 2 21 =0 7 8203

closure 3178 42 7 26 2=2 8 14853

closure 3379 16 0 11 =0 4 935

rhino 385 33 3 17 2=2 7 14015

rhino 386 16 2 13 2=2 6 557

grep 3c3bdace 37 1 2 =0 31 236

grep 54d55bba 64 1 1 =0 61 239

grep 9c45c193 21 2 1 2=2 19 117

find 07b941b1 16 1 4 =0 15 280

find 93623752 11 1 3 =0 10 192

find c8491c11 15 1 3 =0 14 200

find dbcb10e9 15 2 3 =0 13 381

10.3 RQ2: Accuracy of Abstraction

The abstractions provided by ddset are only useful if developers

can be confident that they are accurateÐthat is, they are correct ab-

stractions for a multitude of possible instantiations. Hence, we also

judge the accuracy of our abstractions by generating random inputs

from the produced abstract failure-inducing input, and checking

how effective it was in generating failure-triggering inputs. Given

that we are evaluating the effectiveness of the abstract failure-

inducing input as a producer, we do not have to worry about the

cognitive load of the developer. Hence, invisible nonterminals (i.e

optional elements) are allowed during production.

For generating strings, we simply chose a random expansion for

each of the abstract patterns. The complete string thus produced is

evaluated using the test case.

The invalid values are produced because while generalizing, we

filtered out produced invalid values from a given nonterminal. This

means any nonterminals we use can produce invalid values. For ex-

ample, consider the Closure bug 2937. Theminimized string is var A

= class extends (class {}){} and the abstraction produced is

var ⟨assignable⟩ = class extends (class⟨classTail⟩){}. Accord-

ing to the Javascript grammar, ⟨assignable⟩ can be any ⟨objectLiteral⟩,
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Table 2: Test generation from abstracted patterns

Bug VALID % FAIL % Bug VALID % FAIL %

clj-2092 100 100 closure 3379 76 100

clj-2345 100 100 lua-5.3.5 4 100 100

clj-2450 62 100 rhino 385 49 100

clj-2473 40 100 rhino 386 100 100

clj-2518 100 100 grep 3c3bdace 100 100

clj-2521 100 100 grep 54d55bba 100 100

closure 1978 76 100 grep 9c45c193 100 100

closure 2808 100 100 find 07b941b1 100 100

closure 2842 100 99 find 93623752 100 100

closure 2937 36 100 find dbcb10e9 100 100

closure 3178 57 100 find c8491c11 100 100

which through a long chain of rules allows ⟨singleExpression⟩, which

allows almost all other parts of Javascript to be present. However,

only a limited number of items are allowed in the ⟨assignable⟩ posi-

tion. This validation is handled external to the parser. Unfortunately,

given that this validation is absent for the fuzzer, it produces inputs

of the type: {var { T[yield] (){return}} = class extends

(class {}){} where the fragment { T[yield] (){return}} is

allowed by the grammar, but invalid as an ⟨assignable⟩ according

to the language semantics.

The results for accuracy are given in Table 2. While not all inputs

produced are valid, almost all valid inputs derived are actually

failing. The term łabstract failure-inducing inputž thus is adequate.

This is especially true for simple languages such as find and grep

command lines, which perform very well in terms of accuracy.

Instantiating abstract failure-inducing inputs produced by ddset

produces failures with high accuracy. On average, 86.5% of inputs

produced were valid, of which 99.9% succeeded in

reproducing the failure.

11 THREATS TO VALIDITY

Our evaluation has the following threats to validity:

External Validity. The external validity (generalizability of our

results) of our results depends on how representative our

data set is. Our case study was conducted on a small set

of programming language interpreters and UNIX utilities.

Further, we evaluate only a limited number of bugs for their

abstractability. Hence, there exist a threat that our samples

may not be representative of the real world. A mitigating

factor is that these were real bugs logged by real people, and

the grammars we used are from some of the most popular

and complex programming languages that are used to build

real world applications. Hence, we believe that our approach

can be generalized to other subjects, especially subjects with

less complex languages.

Internal Validity. The threat to internal validity refers to the cor-

rectness of our implementation and evaluation.Wemitigated

this by verifying that all our algorithms and programs work

on a small set of well understood examples before applying

it to our sample set of bugs. Every resulting abstract failure-

inducing input is simple enough to quickly spot errors.

Construct Validity. The threat to our construct validity (are we

measuring what we claim to be measuring) is how useful

the effectiveness and accuracy measures are. Short of a user

study, this threat cannot be completely mitigated. However,

we note that our abstraction intuitively models how a devel-

oper thinks about a fault causing input, i.e. łhere is a variable,

and if I use this particular variable in this fashion later, it

triggers a bugž. We also note that simplification and gener-

alization seem to be qualities whose usefulness for users is

universally accepted.

12 RELATED WORK

Despite their importance for debugging, the study of failure-inducing

inputs and their characteristics is very limited. Notably, the ques-

tion of determining sets of failure-inducing inputs has, to the best

of our knowledge, never been addressed in the literature; ddset

thus opens the door to a new field of research.

Generalizing failure-inducing inputs has been mostly studied

in the context of reducing them. The original algorithm for delta

debugging for program reduction was introduced by Zeller and

Hildebrandt [19]. Delta debugging works by partitioning the input

sequence into chunks and checking whether smaller and smaller

chunks can be discarded while retaining the required property.

A number of variants for delta debugging exist. The first research

to target structured inputswasHDD [12] byMisherghi and Su. HDD

was motivated by finding that delta debugging performs poorly on

structured inputs. HDD applies delta debugging on a single level

of the hierarchy at any given time. Herfert et al [10] introduced

tree transformations for hierarchical reduction and showed that

in typical programming languages, parent nodes could often be

replaced by one of the child nodes, leading to better reduction.

Perses [18] by Sun et al. uses an input grammar to guide reduction.

The innovation of Perses is in realizing that one could use the node

type and look for similar node types in the descendent nodes for

replacement. The other innovation is in identifying that certain

kinds of nodes can be entirely deleted if the nonterminal definition

has an empty rule. ddset uses Perses as its initial reduction step and

generalizes from there, using the input grammar also to produce

additional test inputs to validate abstractions.

Reduction algorithms can also be specialized for individual in-

put languages. ChipperJ [17] uses Java specific transformations to

produce a minimal cause preserving input. A similar research is

C-Reduce by Regehr et al [16] for C programs. Similar to ChipperJ,

it applies a sequence of valid reducing transformations on C code

to obtain a minimal cause preserving input. ChipperJ and C-Reduce

achieves minimization through their in depth semantic knowledge

of the Java and C programs, and together outperform other more

general variants of hierarchical delta debugging. The identification

of context-sensitive nodes, as implemented in ddset, specifically

targets identifier definition and usage in programming languages.

Among the specializations of delta debugging for specific do-

mains, Bruno’s SIMP tool [5] for reducing failure-inducing SQL

queries stands out in that it attempts to distinguish fixed (neces-

sary) parts in the failure-inducing input from variable parts. In
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contrast to ddset, SIMP does not attempt to generalize inputs to a

maximum or to produce a abstract failure-inducing input.

Another notable approach close to our own is universal sub-value

generalization by Lee Pike [15]. The approach by Pike shows how

one can use a forall construct in Haskell to indicate generalizable

constructors in the Haskell representation of an AST. However,

compared to our approach, Pike’s approach (1) does not generate a

compact representation, (2) does not understand how to deal with

lexical elements, (3) produces unsound generalization when inde-

pendent sub-causes exist, and (4) does not identify context-sensitive

parts such as defined variables (sharing).

Perses and ddset require a grammar for their reduction, abstrac-

tion, and testing steps. Such grammars would typically be specified

manually, which can be quite some effort. Recent work on mining

grammars from dynamic control flow [9] suggests that such gram-

mars can also be extracted from programs by dynamically tracking

individual input characters. In our setting, such a learner could be

applied to produce a grammar from the failing program and its

failure-inducing input, requiring no further specification effort.

13 CONCLUSION AND FUTUREWORK

What are the inputs that cause a failure? We present the first al-

gorithm that not only reduces a given failure-inducing input to a

short string, but also generalizes it to a set of related failure-inducing

inputs. This abstract failure-inducing input is short and easy to com-

municate, and represents the set of failure-inducing inputs with

high accuracy. By producing sets rather than single inputs, ddset

has a clear advantage over classical reduction algorithms.

In our future work, we want to take the generalizations pf ddset

furtherÐnotably by systematically exploring the surroundings of

the original input, not only reducing it, but also by adding addi-

tional elements in order to determine the context under which a

failure takes place or not. Eventually, we thus want to be able to

determine an entire language that not only serves as a producer

of failure-inducing inputs, but also as a recognizer, being able to

predict whether a given input will cause a failure or not. We expect

several usage scenarios for such a recognizer, notably as it comes

to detecting malicious inputs.

ddset and all evaluation data is available as open source at

https://github.com/vrthra/ddset
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