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Dedication

To you, dear reader!
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Abstract

In grammar-based fuzz testing, a formal grammar is used to produce test inputs
that are syntactically valid in order to reach the business logic of a program
under test. In this setting, it is advantageous to ensure a high diversity of inputs
to test more of the program’s behavior.

How can we characterize features that make inputs diverse and associate them
with the execution of particular parts of the program? Previous work does not
answer this question to satisfaction, with most attempts mainly considering
superficial features defined by the structure of the grammar such as the presence
of production rules or terminal symbols, regardless of their context.

We present a measure of input coverage called 𝑘-path coverage, which takes into
account combinations of grammar entities up to a given context depth 𝑘, and
makes it possible to efficiently express, assess, and achieve input diversity.

In a series of experiments, we demonstrate and evaluate how to systematically
attain 𝑘-path coverage, how it correlates with code coverage and can thus be
used as its predictor. By automatically inferring explicit associations between
𝑘-path features and the coverage of individual methods we further show how to
generate inputs that specifically target the execution of given code locations.

We expect the presented instrument of 𝑘-paths to prove useful in numerous
additional applications such as assessing the quality of grammars, serving as
an adequacy criterion for input test suites, enabling test case prioritization,
facilitating program comprehension, and perhaps beyond.
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Zusammenfassung

Im Bereich des grammatik-basierten Fuzz-Testens benutzt man eine formale
Grammatik, um Testeingaben zu produzieren, welche syntaktisch korrekt sind,
mit dem Ziel die Geschäftslogik eines zu testenden Programms zu erreichen.
Dafür ist es vorteilhaft eine hohe Diversität der Eingaben zu sichern, um mehr
vom Verhalten des Programms testen zu können.

Wie kann man Merkmale charakterisieren, die Eingaben vielfältig machen und
diese mit der Ausführung bestimmter Programmteile in Verbindung bringen?
Bisherige Ansätze liefern darauf keine ausreichende Antwort, denn meistens
betrachten sie oberflächliche, durch die Grammatikstruktur definierteMerkmale,
wie das Vorhandensein von Produktionsregeln oder Terminalen, unabhängig
von ihrem Verwendungskontext.

Wir präsentieren ein Maß für Eingabeabdeckung, genannt 𝑘-path Abdeckung,
welche Kombinationen von Grammatikelementen bis zu einer vorgegebenen
Kontexttiefe 𝑘 berücksichtigt und es ermöglicht, die Diversität von Eingaben
effizient auszudrücken, zu bewerten und zu erzielen.

Mit Experimenten zeigen und evaluieren wir, wie man gezielt 𝑘-path Abdeckung
erreicht und wie sie mit der Codeabdeckung zusammenhängt und diese somit
vorhersagen kann. Ferner zeigen wir wie automatisches Erlernen expliziter
Assoziationen zwischen Merkmalen und der Abdeckung einzelner Methoden
die Erzeugung von Eingaben ermöglicht, welche auf die Ausführung bestimmter
Codestellen abzielen.

Wir rechnen damit, dass sich 𝑘-paths als ein vielseitiges Instrument beweisen,
dessen Anwendung über solche Gebiete, wie z.B. Messung der Qualität von
Grammatiken und Eingabe-Testsuiten, Testfallpriorisierung, oder Erleichterung
von Programmverständnis, hinausgeht.
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Chapter 1

Introduction

In the domain of software testing, one of the main approaches to ensuring
decent quality of a program is so called fuzz testing or fuzzing for short. Since
its invention by the father of fuzzers Barton Miller [87] in the early nineties,
this very simple technique of testing programs with randomly generated inputs
has been widely adopted by both academia and industry and has seen a lot of
improvements over the years with no sign of stopping any time soon. Its areas
of application now span multiple domains ranging from command-line utilities
to monolithic backend services to swarms of microservices to smart devices to
generic user-interfaces.

In principle, fuzzing is a very cost-effectivemeans to test programs for robustness:
if a program has not been subjected to random inputs before, chances are high
that some input will cause it to misbehave.

However, modern programs tend to have much more robust handling of their
inputs, and the simple trick of feeding them random garbage will no longer work.
Nowadays, it is easy to use readily-available, established validation techniques
to ensure that any input which does not adhere to the expected form is simply
discarded before its malformed contents can reach any of the actual business
logic and cause harm.

On the other hand, fuzzing itself has neither become obsolete, nor did it stagnate.
Just as software evolved to better deal with structural errors in its inputs by
means of input validation, fuzzers have, in turn, taken on the burden of reaching
and thereby also hardening as much of the business logic as possible. In order to
be able to reach this logic though, a fuzzer must be capable of producing inputs
that pass the validation criteria of the program under test.

One such common, very basic validation criterion is the syntactic validity, stating
that the input must adhere to a specific formal language. To produce inputs
that meet this requirement, both established and novel fuzzing approaches
make use of formal grammars which specify the language of program inputs.
Given a grammar, these grammar-based fuzzers are able to confidently produce
syntactically valid inputs that pass the structural validation of the program’s
input parser and thus reach deeper within the business logic.

1



2 CHAPTER 1. INTRODUCTION

Expr := AddExpr;
AddExpr := MultExpr

| AddExpr ("+" | "-") MultExpr;
MultExpr := UnaryExpr

| MultExpr ("*" | "/" | "%") UnaryExpr;
UnaryExpr := Identifier

| "+" UnaryExpr
| "-" UnaryExpr
| "++" UnaryExpr
| "--" UnaryExpr
| "(" AddExpr ")"
| DecDigits;

DecDigits := DecDigit+;
DecDigit := "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9";
Identifier := "x" | "y" | "z";

Figure 1.1 / Grammar for a subset of arithmetic expressions in the
JavaScript programming language (excerpt). Please consider
navigating to Appendix B, which contains a copy of this figure,
and printing it out on an extra sheet to have it at hand for easy
reference.

In a few words, a grammar-based fuzzer works by expanding a start symbol into
further symbols, which it expands repeatedly, following the productions in the
grammar and selecting from alternatives, until only terminal symbols are left.
These terminals build up the resulting input string produced by the fuzzer.

For an introductory example consider the grammar given in Figure 1.1, which
describes a small subset of arithmetic expressions in the language JavaScript. It
allows expressions over integers and three variables. A fuzzer could, for instance,
expand the start symbol Expr into an AddExpr and then a MultExpr, which, in
turn, would expand into a UnaryExpr, which would eventually become a string
of digits such as "42".

1.1 Research Problem
While the concept of producing inputs from grammars is simple, any practical
application faces several problems. One such issue is ensuring that an input
does not grow beyond bounds. In Figure 1.1, if the fuzzer always selects the last
expansion alternative, the result will be an infinitely long arithmetic expression
because there is no way to terminate the recursion in AddExpr or MultExpr.

However, infinity is not the only bound to avoid: When the fuzzer generates
inputs that are very large, there is still no guarantee of their usefulness. More
likely than not, the law of diminishing returns applies to the behavior that can
be reached in the program under test. Even worse if the runtime scales at least
linearly with the size of the input, which is not too unrealistic of an expectation.
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DecDigit := S0;
S0 := "0" | S1;
S1 := "1" | S2;
S2 := "2" | S3;

⋯
S8 := "8" | S9;
S9 := "9";

Figure 1.2 / Deeply Nested Grammar. A
naïve random generator will get “stuck”
early. The chances of it reaching the
terminal "9" are very low in a uniform
selection setting.

A fuzzer thus needs some means to determine which expansions to choose in
order to avoid such growth.

Another issue of generating from grammars is ensuring input coverage. In-
tuitively, a high variation in the inputs (say, using different operators in our
JavaScript example) induces a high variation in program behavior. Conversely,
if some specific element is not present in the input (say, the "+" operator), the
part of the code that is responsible for processing it will not be executed. It is
therefore desirable to cover as many different input elements and productions
as possible. Applied to our expression grammar, this would require us to cover
all operators, identifiers, and digits.

How does one efficiently achieve high input coverage? One way, suggested
by Purdom [105] is to ensure that during generation, uncovered production
alternatives would be preferred over covered production alternatives. In Fig-
ure 1.1, we would first expand AddExpr into the first alternative (MultExpr),
and the next time into the second alternative. Likewise, once we have covered
the "+" alternative, we would go for the "-" alternative the next time. Over
time, Purdom’s approach would cover all alternatives.

Unfortunately, there exist grammars for which neither random generation nor
Purdom’s approach succeed in achieving coverage. This becomes apparent
when we reformulate the DecDigit rule as shown in Figure 1.2. Now, the digits
are no longer uniformly chosen and produced.

When choosing a DecDigit expansion using a naïve random approach, the
probability of generating a "0" is 0.5, the probability of generating a "1" is
(1 − 0.5) × 0.5 = 0.25, then it is (1 − (1 − 0.5) × 0.5) × 0.5 = 0.125 for a "2", and
so forth, up to 0.000 976 562 5 or 1/1024 for a "9".

Purdom’s approach helps a bit, but is far from perfect; in the first expansion of
S0, it would mark "0" as covered, then expand S1 the next time. However, after
having both covered "0" and S1, it would no longer prefer one over the other,
still yielding "0" in 50 % of expansions.

If Figure 1.2 feels too artificially constructed, consider Figure 1.3, listing possible
rules for identifiers in JavaScript. Not only does this form result in 50 % of
identifiers consisting of one character only, but both Identifier alternatives
would be quickly marked as covered by Purdom’s approach, giving the fuzzer
no incentive to systematically cover identifier characters or their categories.
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Identifier := Character | Character Identifier;
Character := ASCIICharacter | UnicodeCharacter;
ASCIICharacter := ASCIIUpper | ASCIILower | "_";

Figure 1.3 /An Identifier rule that is hard to cover fully (excerpt
from a real JavaScript grammar).

The deeper the grammar, the greater the extent of this coverage problem.1
Therefore, improvements are highly desirable over the current state of the art in
grammar-based input generation, in order to better cope with challenges such as
deeply nested grammars, and to ensure overall effective and adequate grammar
coverage of the generated test suites.

Yet another problem of grammar-based fuzzing has to do with performance:
Modern fuzzers can generate countless inputs very efficiently, creating valid
inputs by mutating given samples and/or leveraging language descriptions, or
using guidance from program execution to cover as much code as possible. In
practice, however, the effectiveness of a fuzzer heavily depends on the execution
time of the program under test. If processing an input takes a millisecond, then
running a million fuzzing inputs is no big problem. If it takes seconds though,
then fuzzing with many inputs can quickly become infeasible.

As an example, consider a hypothetical compiler that takes JavaScript code as its
input and produces an optimized version of it. Let us further assume that this
compiler has an optimization pass which has a method distributive_rule()

that splits an expression of the form 𝑎 × (𝑏 + 𝑐) into 𝑎 × 𝑏 + 𝑎 × 𝑐 such that the
subterms can be optimized individually. If our goal is to focus the fuzzing efforts
on this method while still executing it as part of the overall compilation, we
must guide the generation of new inputs with the desired expression in a precise
manner or to enable accurate selection from available inputs.

To accomplish these goals, it is desirable to leverage a readily available grammar
to learn associations between features of inputs and locations in the code these
inputs are reaching. Once learned, such associations can improve the perfor-
mance of a fuzzer by serving as efficient oracles, helping to portion its efforts on
the relevant parts of the program under test.

This dissertation approaches the above issues based on a concept of input features,
and makes the following contributions to grammar-based fuzzing:

Input features. First and foremost, this dissertation introduces a family of novel
input features called 𝑘-paths, which allow expressing the degree of diver-
sity that a given input attains by accounting for the number of combinations
of grammar elements an input contains. The 𝑘-paths further provide the
basis for the definition of a grammar coverage measure.

Grammar coverage. This definition of grammar coverage gives rise to an algo-
rithm which ensures quick coverage of all input features. Specifically, it

1Technically, Purdom’s algorithm cannot handle grammar productions containing alternatives
as it expects them to be separate productions with the same left-hand side. While it is possible to
rewrite productions accordingly, in practice, this results in large and not well readable grammars.
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chooses expansion alternatives that lead to input elements not yet covered.
Applied on Figure 1.2, its first ten productions consist of the elements "0"
to "9", and on Figure 1.3, it produces long identifiers that cover all valid
Character elements.

Combination coverage. The algorithmalso ensures coverage of combinations of
grammar elements, whose context size is controlled by a single parameter 𝑘.
When applied on Figure 1.1, for instance, it produces additions within
multiplications, multiplications within additions, unary minuses within
parentheses, and all sorts of combinations one would want to test, e.g., in
an optimizing compiler. The presented algorithm also effectively prevents
inputs from growing beyond bounds.

Coverage associations. Using a grammar as a parser allows determining the
features of a given input and associate them with coverage of individual
methods in the program under test, resulting in a set of classifiers that
model the relationship between input elements and resulting coverage.
These associations are explicit, user-facing, and reusable. For example, for
distributive_rule(), an associated feature could be the presence of an
addition as part of a multiplication.

Targeted fuzzing. The obtained classifiers can be used to construct inputs that
satisfy their conditions and thus are set to cover the method in question.
A fuzzer can thus target individual methods without requiring guidance
from the program, which is especially useful if executing the program is
expensive.

Coverage prediction. The learned classifiers can take an arbitrary input (given
or generated), parse it into its elements, and predict the code coverage
from the input features only. This yields a very cost-effective method for
selecting inputs that cover a particular method.

1.2 Thesis Structure
The remainder of this dissertation is structured as follows:

Chapter 2 begins by giving a minimum necessary background on context-free
grammars and then proceeds to introduce a practical grammar notation,
a corresponding grammar graph representation, and finally a notion of
grammar coverage called 𝑘-path coverage.

Chapter 3 then builds on the concept of 𝑘-paths and presents an algorithm that
allows systematically and efficiently producing a set of inputs that achieve
full 𝑘-path coverage while at the same time effectively avoiding boundless
growth to combat the problem of bloat.

Chapter 4 explores a variant of the generation algorithm from the previous
chapter allowing us to produce multiple input sets over an entire range of
𝑘-path coverage levels. This rich data set enables us to explore the nature
of the relationship between 𝑘-path coverage and code coverage, which, in
turn, motivates additional use cases for 𝑘-paths.

Chapter 5 demonstrates how to leverage 𝑘-paths to learn associations between
input features and code locations. These associations are explicitly materi-
alized in the form of machine learning classifiers, which are consequently
used for predicting the code coverage of given inputs and for generating
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inputs that are aimed at the reaching code locations of interest without
involving the execution of the program under test.

Chapter 6 gives an overview of relevant fuzzing approaches related to grammar-
based and machine-learning-based techniques and provides commentary
comparing them with the approaches presented in this dissertation.

Chapter 7 concludes and gives an outlook on future research directions that
are enabled by the approaches presented in this dissertation.

1.3 List of Publications
This section gives a brief overview over the publications that I (co-)authored
and outlines my contributions to them. While all these publications influenced
my work to one degree or another, not all of them find a direct representation in
this thesis. Publications marked with ⋆ are the ones that build up the backbone
of this dissertation.

▪ Nikolas Havrikov, Alessio Gambi, Andreas Zeller, Andrea Arcuri, and
Juan Pablo Galeotti. “Generating Unit Tests with Structured System In-
teractions.” In: 12th IEEE/ACM International Workshop on Automation of
Software Testing, AST@ICSE 2017, Buenos Aires, Argentina, May 20-21, 2017.
IEEE Computer Society, 2017, pp. 30–33. doi: 10.1109/AST.2017.2.
This workshop paper explores the integration of my specification-based
input generator [49] in the context of search-based unit testing as imple-
mented by EvoSuite [33]. It demonstrates the benefits of a grammar-like
generation approach (in this case based on an XML Schema) as opposed
to traditional stubbing or mocking [34] for overcoming environmental
requirements of a program under test.

⋆ Nikolas Havrikov. “Efficient Fuzz Testing Leveraging Input, Code, and
Execution.” In: Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina,May 20-28, 2017 - Companion
Volume. IEEE Computer Society, 2017, pp. 417–420. doi: 10.1109/ICSE-
C.2017.26.
In this doctoral symposium submission, I raise the initial questions about
the feasibility and efficiency of a grammar-based approach to fuzzing,
which have eventually matured over time and guided this dissertation.

⋆ Nikolas Havrikov and Andreas Zeller. “Systematically Covering Input
Structure.” In: 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019.
IEEE, 2019, pp. 189–199. doi: 10.1109/ASE.2019.00027.
In this work, I introduce the concept of 𝑘-paths and the 𝑘-path-algorithm
for efficiently generating inputs from a context-free grammar. At this time
I have also begun gathering an extensive set of real-world test subjects for
performing practical empirical evaluations, which addresses one of the
weak points of fuzzer evaluation I point out in my previous publication.

▪ Ezekiel Soremekun, Esteban Pavese, Nikolas Havrikov, Lars Grunske,
and Andreas Zeller. “Inputs from Hell: Learning Input Distributions

https://doi.org/10.1109/AST.2017.2
https://doi.org/10.1109/ICSE-C.2017.26
https://doi.org/10.1109/ICSE-C.2017.26
https://doi.org/10.1109/ASE.2019.00027
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for Grammar-Based Test Generation.” In: IEEE Transactions on Software
Engineering (2020). doi: 10.1109/TSE.2020.3013716.
In this publication, which evaluates data-driven, probabilistic grammar-
based generation, I have contributed to the discussion about the design
of the probability acquisition and inversion mechanisms, as well as the
implementation and test subjects. This study has greatly benefitted from
the strong technical foundation and subject collection efforts introduced
in my previous publication.

▪ Alexander Kampmann, Nikolas Havrikov, Ezekiel O. Soremekun, and
Andreas Zeller. “When Does my Program do This? Learning Circum-
stances of Software Behavior.” In: ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, November 8-13, 2020. ACM, 2020, pp. 1228–
1239. doi: 10.1145/3368089.3409687.
This paper introduces an approach to automated reasoning about program
behavior, based on features of its inputs. By leveraging a grammar, an input
can be both deconstructed into its parts and (re-)generated according to
desired constraints. This enables the use of decision trees to automatically
learn and refine theories explaining a given behavior, provided an oracle,
of course. My contributions comprise the technical implementation of a
grammar representation, software design considerations, code reviews,
and the addition of a complex, real-world test subject. This publication
represents my first foray into applying machine-learning techniques in
the context of test input generation, which later led me to elaborate on the
mapping of input features to locations in code.

▪ Rahul Gopinath, Alexander Kampmann, Nikolas Havrikov, Ezekiel O.
Soremekun, and Andreas Zeller. “Abstracting Failure-Inducing Inputs.”
In: ISSTA ’20: 29th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis, Virtual Event, USA, July 18-22, 2020. ACM, 2020, pp. 237–
248. doi: 10.1145/3395363.3397349.
This publication introduces the DDSET algorithm, which is able to deduce
an abstract failure-inducing input pattern, given a grammar and a failing
input to start from. I am very proud to have contributed to the idea of
this best-paper award winning publication. In fact, the pattern aspect of
this approach has inspired me to investigate the possibility of manifesting
input features as human-readable entities.

⋆ Nikolas Havrikov, Alexander Kampmann, and Andreas Zeller. “From
Input Coverage to CodeCoverage: Systematically Covering Input Structure
with k-Paths.” In: ACM transactions on software engineering and methodology
(2021). TOSEM-2021-0220. issn: 1049-331X. submitted.
In extension of previous work, 𝑘-paths and decision tree learning are com-
bined to leverage grammar-based features to produce human-readable
conditions under which methods under test can be reached. This allows
generating relevant tests with pinpoint accuracy even on the system level.
A fortunate side effect is the prediction capability granted by the learned
classifiers, allowing to easily select from a given set of test inputs the

https://doi.org/10.1109/TSE.2020.3013716
https://doi.org/10.1145/3368089.3409687
https://doi.org/10.1145/3395363.3397349
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ones that are of interest. My contributions include the conception of the
approach, the extension of the technical base to support 𝑘-paths, the imple-
mentation of a parallel evaluation pipeline, the collection of test subjects
and grammars.



Chapter 2

Structural Input Features

This chapter introduces the concept of 𝑘-paths, which lay the foundation for
addressing the problems outlined in the introduction. The following chapters
will build on this concept and demonstrate its application to fuzzing, as well as
achieving high input and code coverage.

2.1 Context-Free Grammars
A concept that is perhapsmost central to this dissertation is the concept of formal
grammars, or more specifically, context-free grammars. A context-free grammar
is a formalism to define a context-free language as introduced by Chomsky
[23]. It is often formally described as a tuple (𝑁, 𝑇, 𝑃, 𝑠), where 𝑁 is the set
of non-terminal symbols, 𝑇 is the set of terminal symbols, which are distinct
from the non-terminal symbols. 𝑃 denotes the set of productions of the form
A := X, where 𝐴 ∈ 𝑁 and 𝑋 ∈ (𝑁 × 𝑇)∗. Finally, 𝑠 ∈ 𝑁 is the so-called start
symbol. All words belonging to the language described by the grammar can be
obtained from the start symbol by repeatedly rewriting non-terminals according
to matching productions in a process called deriving or expanding.

For example, the following is a grammar describing the language whose words
consist of 𝑛 contiguous “a” characters, followed by a single “b”, followed by 𝑛
contiguous “c” characters, for 𝑛 ≥ 0.

A := "b"

A := "a" A "c"

In this example, the four components of the tuple that define the grammar have
the following values:

▪ 𝑁 = {𝐴}
▪ 𝑇 = {𝑎, 𝑏, 𝑐}
▪ 𝑠 = 𝐴
▪ 𝑃 = {𝐴 := 𝑏, 𝐴 := 𝑎 × 𝐴 × 𝑐}

9
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Oftentimes, grammars are written in the Backus-Naur form (BNF), which allows
combiningmultiple productions that share the same left-hand side non-terminal
into so-called alternations bymeans of the “|” character. BNF allows us to rewrite
the above example more concisely as follows:

A := "b" | "a" A "c"

For practical reasons, it often makes sense to assume that the start symbol does
not occur anywhere on the right-hand side of any production. Any grammar is
easily re-written such that this holds by introducing an additional production
𝑠′ := 𝑠. In our example this transformation looks as follows:

Start := A

A := "b" | "a" A "c"

This formal tool of expressing languages through grammars gives us a solid
base from which to start our consideration of grammar-based input generation
for our use case of fuzz testing.

2.2 Practical Grammar Notation
The notation for context-free grammars as presented in Section 2.1 is feature-
complete, but not very comfortable to work with in practice. Therefore, in
the interest of readability and engineering practicality, this section introduces
additional grammatical constructs, inspired, among others, by the domain-
specific language of the popular parser generator ANTLR [100]. To demonstrate
this new notation to its full extent, let us revisit some aspects of the grammars
we have seen before.

2.2.1 Inline Alternatives
Consider the following fragment from the JavaScript grammar excerpt from
Figure 1.1. Note that apart from the top-level alternations representing the
possible derivations of the non-terminals, there are also alternations inside the
parenthesized expressions that are part of the concatenations.

AddExpr := MultExpr

| AddExpr ("+" | "-") MultExpr;
MultExpr := UnaryExpr

| MultExpr ("*" | "/" | "%") UnaryExpr;

This parenthesized inline notation lends itself well to a human reader because it
does not interrupt the flow of reading – in this case, by introducing additional
non-terminals to capture the different operators, like this:
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AddExpr := MultExpr

| AddExpr AddOp MultExpr;
AddOp := "+" | "-";
MultExpr := UnaryExpr

| MultExpr MultOp UnaryExpr;
MultOp := "*" | "/" | "%";

However, by failing to explicitly designate the concept of operators, this notation
does not make them entities in their own right when it comes to grammar
coverage. This excludes them from participating in coverage metrics that are
based on named entities. This trade-off between convenience and explicitness
should be considered by engineers when creating grammars for testing purposes.

2.2.2 Quantifications
Going back to another example from the JavaScript grammar, we have the
following rule:

DecDigits := DecDigit+;

This derivation rule leverages the Kleene plus notation to conveniently indicate
that a repetition of the DecDigitmust occur at least once. A new operator rarely
comes alone, so we can extend our notation to include the Kleene star (∗) and
the optionality indicator (?) as well. Going even further, we may want to express
bounded repetitions, which explicitly set a minimum and maximum number of
occurrences of particular symbols. As an example, consider the following rules:

UnaryExpr := "-"{0,2} Identifier | … ;
DecNumber := "0" | "-"? NonZeroDecDigit DecDigit∗;

Here, the "-"{0,2} prescribes that "-" must occur anywhere between zero and
two times, both extremes included. Meanwhile, "-"? is a shorthand which
indicates that "-" may occur exactly once or not at all, while DecDigit∗ allows
DecDigit to occur arbitrarily many times, zero included.

Without these operators, the above rules would have to be written in a manner
that is much more cumbersome and requires to introduce an additional rule:

UnaryExpr := Identifier

| "-" Identifier
| "-" "-" Identifier
| … ;

DecNumber := "0"

| NonZeroDecDigit DigitKleeneStar;
| "-" NonZeroDecDigit DigitKleeneStar;

DigitKleeneStar := "" | DecDigit DigitKleeneStar;

Together, these operators allow us to quantify the occurrences of grammar
symbols, so we shall refer to them as quantifications.



12 CHAPTER 2. STRUCTURAL INPUT FEATURES

2.2.3 Regular Expressions
Why stop there, though? Since we can fully include any regular language inside
a context-free grammar as shown by Chomsky [23], we might as well allow full
embeddings of regular expressions as part of our notation. For example, we
could simplify the way we define DecNumber by writing it as a single regular
expression:

DecNumber := /0|(-?[1-9][0-9]*)/;

This notation for regular expressions is actually much more powerful than the
quantifications that we have just defined. Since regular languages are closed un-
der complement and intersection, they allow us to very tersely express negative
and intersecting expressions:

NonDigit := /[^0-9]/;
NonKeyword := /~(for|if|break|continue)&([a-z]+)/;

The NonDigit rule allows instantiating any character as long as it is not a decimal
digit, while NonKeyword derives into any non-empty string of lowercase Latin
characters as long as it is not equal to any of for, if, break, or continue. Inside
regular expressions, ~ signifies the complement of the following expression, while
& is the intersection of two regular languages.1 If we had to resort to standard
context-free grammar notation, we would have had a very hard time expressing
these same derivations, as doing so would require us to enumerate all possible
alternatives.

2.2.4 Grammar for Grammars
When applied together, the above extensions of the original context-free gram-
mar notation give us one that is both convenient to use in practice and provides
a way to control which parts of the language are more interesting to explore than
others.

With the set of additional grammar constructs complete, we are now finally
ready to define the full language of our extended context-free grammars as a
context-free grammar itself. Figure 2.1 formalizes the most important structures
of this meta-grammar.

A grammar consists of productions, each of which expands a non-terminal into an
alternation, delimited by the ":=" sign. A production is always terminated by a
semicolon; this is useful when implementing a whitespace-insensitive parser for
files containing grammars.

An alternation is a non-empty sequence of alternatives, which are concatenations
delimited with the "|" character. A concatenation consists of atoms, which can
be parenthesized alternations, literals, regular expressions, or references. While
references are essentially non-terminals on the right side of a production, it

1For implementation reasons, the exact notation and the extent of supported features for regular
expressions is borrowed from Møller [91].
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Grammar := Production+;
Production := NonTerminal ":=" Alternation ";";
Alternation := Concatenation ("|" Concatenation)∗;
Concatenation := Atom+;
Atom := ("(" Alternation ")"

| Regex
| Literal
| Reference) Quantifier?;

Quantifier := "?" | "+" | "*"
| "{," Number "}"
| "{" Number ",}"
| "{" Number "," Number "}";

Regex := "/" regexp "/";
Number := /[0-9]+/;
Reference := NonTerminal;
NonTerminal := /[A-Za-z_п][A-Za-z0-9_$]*/;
Literal := """ (/[^\"\\]/ | "\" /[nrt\"\\]/)∗ """;

Figure 2.1 / A meta-grammar for extended context-free grammars. The
definition of regexp is omitted here, but it holds no secrets as it cor-
responds to classical regular expression notation, which, in this case,
is taken directly from [91]. Also, the construct """ denotes a string
consisting of one quote character.

is important to make the distinction because it is the references, and not the
non-terminals, that will play an important role in the upcoming definition of
grammar coverage.

An optional quantifier allows expressing how often an atom can be repeated in
accordance with the definition from Section 2.2.2. As an additional detail of
convenience, beside the notation foo{m,n}, which indicates at least 𝑚 repetitions
and at most 𝑛 repetitions of foo, we also allow partial specifications such as
foo{x,} and foo{,y}, which simply specify at least 𝑥, and at most 𝑦 repetitions of
foo, respectively.

Literals are what comes closest to the terminals from Section 2.1, except that they
allow encoding arbitrary strings as specified by the Scala language [96].

Regular expressions are delimited with "/" and admit any pattern that is legal in
the specification by Møller [91] with the exception that forward slashes must be
escaped. As per Chomsky [23], these regular languages can be fully embedded
into the context-free grammar; and while my implementation does this to some
extent by synthesizing appropriate derivation rules, in some cases it is more
convenient to simply replace the regular expressions by corresponding automata
in the in-memory model of the grammar, instead.
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2.3 Grammar Graph Representation
Now that we have established the set of concepts that make up our grammars,
we canmove on to build a representation of the underlyingmodel that is suitable
for us to work with. This step can be considered to serve the same function as
an intermediate representation does in a compiler.

A representation that lends itself particularly well for our purposes, comes in
the form of a directed graph, to which we shall refer as the grammar graph. Its
nodes can be seen as manifestations of some of the grammar parts described
in Figure 2.1, while its edges represent derivations. As an example, consider
Figure 2.2, which shows an excerpt from the grammar graph, obtained from the
grammar in Figure 1.1.

A grammar graph is constructed from the productions of a grammar by applying
the following rules to their right-hand sides:

1. For each alternation, a synthetic alternation node | is created, whose
children are the graph representations of its corresponding alternatives. If
there is only one alternative, no node is created for the alternation, and its
only alternative takes its place instead.

2. Analogously, concatenations become synthetic ∼ nodes with their atoms
as children, while handling single atoms as in the case of alternations.

3. Each quantifier becomes a dedicated node (e.g., + ), whose child is the
graph representation of the atom the quantifier is attached to.

4. Literals become nodes with no children.
5. Regular expressions also become childless nodes. In the first instance, it

is sufficient to leave such regex nodes as is, but for practical purposes,
they are translated into their equivalent context-free form, and replaced
with the graph representation of this form. In cases where this translation
causes a blow-up in the number of nodes that exceeds a given threshold,
the regex node is left as is, but it is also enriched with a state machine.

6. References to non-terminals become nodes that have as their child the
graph representation of the production they refer to.

7. All nodes are assigned a unique numeric identifier. This is necessary to
distinguish between equal nodes occurring in different contexts.

Not unlike a tree, the resulting graph has a single “root” node corresponding to
the right-hand side of the production of the grammar’s start symbol, that has
no incoming edges, which lends the graph a familiar, tree-like appearance.

Definition 1: Root Node

Let 𝐺 be a grammar graph.

Then 𝑟𝑜𝑜𝑡(𝐺) shall be the root node of 𝐺.

Additionally, because edges are directed, we can conveniently call the node at the
start of an edge the parent node, and the one on the end the child node. However,
very much unlike a tree, a grammar graph can have cycles because references
can occur in multiple derivation rules. This is also the reason why nodes may
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AddExpr0

|

MultExpr2

|

UnaryExpr8

|

Identifier16

|

"x"39 "y"40 "z"41

∼

"+"27 UnaryExpr28

… DecDigits22

+

DecDigit42

|

"0"44 "1"45 "2"46 "3"47 "4"48 "5"49 "6"50 "7"51 "8"52 "9"53

∼

MultExpr13 |

"*"23 "/"24 "%"25

UnaryExpr15

∼

AddExpr5 |

"+"10 "-"11

MultExpr7

Figure 2.2 /An excerpt from the graph representation of the (partial) grammar from Figure 1.1. The
root node is AddExpr0 because it is the right-hand side of the production of the start non-terminal
Expr. The “backward” dashed lines indicate derivations of references that prevent the graph
from being a tree or even a DAG. Numeric identifiers are only shown for symbolic nodes. Please
consider navigating to Appendix B, which contains a copy of this figure, and printing it out on
an extra sheet to have it at hand for easy reference.
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have not only multiple children, but also multiple parents. In Figure 2.2, the
edges corresponding to such additional occurrences are marked as dashed lines,
to leave the underlying tree-like structure clearly visible.

We refer to nodes corresponding to alternations, concatenations, and quantifiers
as synthetic nodes, while all others are symbolic nodes. This serves to indicate the
purpose of the nodes: While the symbolic nodes are parts of the textual repre-
sentation of a grammar that were explicitly named by its creator, presumably a
human, synthetic nodes only serve the purpose of orchestrating how the former
relate to each other.

Note how the grammar graph sometimes breaks out of the structure given by
the textual representation of the grammar. For example, in contrast to what
Figure 2.1 claims, an alternation need not necessarily have concatenations as
its children, in case these concatenations consist of a single element. One such
case can be seen in Figure 2.2, where the atomic reference node MultExpr2 is
the direct child of an alternation node | .

Another difference from the textual representation lies in the way quantifiers
are modeled: Because they merely modify other derivation rules, we can rep-
resent them using synthetic quantification nodes, which have the subject of
the modification as their child, and the nature of the modification as attributes
encoded in the node. This approach allows handling of quantifiers in a manner
consistent with the other ADT2-like grammar constructs, without the need of
reformulating them in terms of recursion.

However, possibly the most significant difference between the grammar graph
and the textual grammar representation is the introduction of unique numeric
identifiers to all nodes of the grammar. The addition of such a seemingly small
technical detail enables us to distinguish between multiple occurrences of the
same (symbolic) node in different contexts. As an example, consider the terminal
"+" as it occurs in Figure 1.1. Without identifiers, we have no way to specify
that we mean the binary "+" operator that occurs between the AddExpr and
MultExpr as opposed to the unary "+" which precedes a UnaryExpr. Using the
identifiers, we can easily differentiate between these cases by writing "+"10 or
"+"27, respectively.

2.4 Derivation Trees
We can now lean on the model provided by the grammar graph whenever we
parse or generate inputs. Hereby, we will not stray far from literature [1], which
defines parse trees and derivation trees for the two use cases above, respectively.
Since they only differ in naming and purpose, and, in fact, effectively describe
the same structure, we will refer to them as derivation trees, for simplicity.

In the classical definition, a derivation tree represents the syntactic structure
of an input according to a given grammar. Specifically in our case, derivation
trees shall describe the structure according to the graph of a grammar. Thus,
the nodes and edges that make up the derivation trees conveniently come from
the same set as the nodes and edges in the graph of the grammar at hand. This

2ADT refers to Algebraic Data Types.
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AddExpr0

|

∼

AddExpr5

|

MultExpr2

|

UnaryExpr8

|

Identifier16

|

"x"39

|

"+"10

MultExpr7

|

UnaryExpr8

|

DecDigits22

+

DecDigit42

|

"4"48

DecDigit42

|

"2"46

Figure 2.3 / A derivation tree representing the input
string “x+42” according to the grammar graph from
Figure 2.2.

definition provides us with the useful property that every path in a derivation
tree is simultaneously also a path in its grammar graph.

As an example of a derivation tree, consider Figure 2.3, which shows the deriva-
tion tree for the input “x+42”, parsed according to the grammar from Figure 1.1,
or, more accurately, its graph representation as shown in Figure 2.2. Observe
how it is perfectly valid for a derivation tree to contain multiple occurrences of
the same node. This can happen if the derivation contains multiple references to
the same non-terminal as is the case with the UnaryExpr8 node, or when a quan-
tification node has multiple occurrences of its subject, like the two DecDigit42
nodes.

For the upcoming use case of generating derivation trees to obtain inputs for
fuzzing, let us consider the following definition. A tree node has numbered slots,
which are said to be filled with their children:
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AddExpr0

a / First step.

AddExpr0

|

b / Second step.

AddExpr0

|

∼

c / Third step.

AddExpr0

|

∼

|

d / Fourth step.

AddExpr0

|

∼

|

"+"10

e / Fifth step.

AddExpr0

|

∼

|

"+"10

MultExpr7

f / Sixth step.

Figure 2.4 / Derivation tree generation in progress filling one slot at a time.

Definition 2: Slots

A slot is a tuple (parent, child, index, depth), where parent is the node
whose child this slot represents, child is the node that can fill the slot,
index signifies the position of this child node among its siblings, and depth
corresponds to the number of derivations from the root to the child node.

Informally, it may be helpful to think of slots simply as the edges in a derivation
tree. We also say that the child node of a slot is its expansion.

In a fully formed derivation tree such as the one given in Figure 2.3 all slots
are filled. However, during the generation of a tree there may be unfilled slots
where the generation algorithm has not yet added an appropriate expansion.
Consider Figure 2.4, which shows consecutive steps that a derivation algorithm
might take when generating a tree from the JavaScript grammar excerpt. After
the first step given in Figure 2.4a, the tree under construction consists of only
the root node AddExpr0 and a single unfilled slot (AddExpr0, ∅, 0, 1). Here, we
use the ∅ symbol to indicate that the child of a slot is not yet filled in. Further,
this slot has index zero and depth one. According to our grammar graph, this
slot can only be filled with a | node.
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Figure 2.4b shows the state of the tree after a second derivation step. The slot
from the previous step is now filled with the | node, which, in turn results in
an unfilled slot ( | , ∅, 0, 2) at depth 2. This particular slot can now be filled by
either a MultExpr2 or a ∼ node. Our generator decides to fill it with the latter
in Figure 2.4c, which leaves us with three unfilled slots.

An advantage of the slot-based derivation scheme consists in the ability to fill
outstanding slots in an arbitrary order. This is demonstrated as the generator
proceeds to fill the ( ∼ , ∅, 1, 3) slot with its appropriate | expansion in
Figure 2.4d. At this point our outstanding slots are ( ∼ , ∅, 0, 3), ( ∼ , ∅, 2, 3),
and the newly added ( | , ∅, 0, 4). The latter is filled first with the "+"10 node
in Figure 2.4e, which, for the first time since starting the generation does not
add any more unfilled slots to the tree.

Finally, our generator chooses to expand the slot with index = 2 of the ∼ node
in Figure 2.4f, which results in the now filled slot ( ∼ , MultExpr7, 2, 3), but
also brings with it the unfilled slot (MultExpr7, ∅, 0, 4) for the generator to fill
at a later point. To be consistent, as a special case, we define a root slot of our
derivation tree as (∅, AddExpr0, 0, 0).

2.5 Grammar-Based Input Features
With the main concepts put into place, we are now ready to define features that
express properties of the syntactic makeup of inputs. Recall that we initially
set out to define a notion of grammar coverage, so it makes sense to start by
consulting the basic constructs of the grammar.

As we have seen in Section 2.3, the model of a grammar can be represented by
its graph. The nodes in a grammar graph can be divided into synthetic nodes,
which express the structure, and symbolic nodes, which express the content of
the language described by the grammar. Notably, the latter are entities that are
explicitly and purposefully named or stated, which makes them in some way
meaningful to the designer of the grammar. In the interest of brevity, we shall
refer to symbolic nodes simply as symbols going forward.

2.5.1 Symbol Coverage
Let us attempt to quantify the content diversity provided by the symbols of
a grammar. The very first measure we can take is to enumerate the symbols
that a grammar contains by enumerating all symbolic nodes in its grammar
graph. Thinking ahead, and also for convenience, we can leverage the fact that a
derivation tree consists of the same nodes as its grammar graph. Thus, we can
formulate a definition encompassing both of these structures:

Definition 3: Unique Symbols

Let 𝑥 be a grammar graph or a derivation tree. Then 𝑠𝑦𝑚(𝑥) shall be the
set of unique symbolic nodes in 𝑥.
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Armed with this primitive analysis tool, we can express the concept of symbol
coverage of any given input, provided that it is valid according to our grammar:

Definition 4: Symbol Coverage

Let 𝐺 be a grammar graph and 𝑑 a derivation tree of the given input 𝑖 that
was parsed according to 𝐺.

Then 𝑠𝑦𝑚𝑐𝑜𝑣(𝑖) shall be the symbol coverage of 𝑖 computed as follows:

𝑠𝑦𝑚𝑐𝑜𝑣(𝑖) =
∣𝑠𝑦𝑚(𝑑)∣
∣𝑠𝑦𝑚(𝐺)∣

In otherwords, the symbol coverage of an input is the fraction of unique symbolic
nodes of the grammar graph that are present in its derivation tree.

As an example, consider the input “𝑥 + 42” and its derivation tree shown in
Figure 2.3. We can now calculate its symbol coverage as per Definition 4. The
derivation tree has 12 unique symbolic nodes. The grammar graph shown in
Figure 2.2 contains eleven synthetic nodes, however, it omits several descendants
of the UnaryExpr8 node, for brevity. To compute the symbol coverage correctly,
we can consult its original grammar definition from Figure 1.1, and observe that
the omitted part only contains four synthetic concatenation nodes with the rest
being symbolic. Leveraging the fact that the nodes are assigned contiguous,
incrementing identifiers, and the largest identifier having a value of 53, we can
calculate that the grammar graph contains 54 − 11 − 4 = 39 symbolic nodes.

Returning to our goal of determining the symbol coverage, we calculate it as
follows: 𝑠𝑦𝑚𝑐𝑜𝑣(“𝑥 + 42”) = 12/39, or approximately 30.77 %.

In practice, we might be interested in the symbol coverage of not one, but many
inputs at once. This is especially relevant to the use case of fuzzing, where it is
common to reason about sets of inputs and their coverage. With this in mind,
we can extend our definition of symbol coverage as follows:

Definition 5: Symbol Coverage of an Input Set

Let 𝐺 be a grammar graph and 𝐷 a set of derivation trees corresponding
to the inputs 𝑆, parsed according to 𝐺.

Then 𝑠𝑦𝑚𝑐𝑜𝑣(𝑆) shall be the symbol coverage of 𝑆 computed as follows:

𝑠𝑦𝑚𝑐𝑜𝑣(𝑆) =
∣⋃{𝑠𝑦𝑚(𝑑) ∣ 𝑑 ∈ 𝐷}∣

∣𝑠𝑦𝑚(𝐺)∣

Intuitively, the symbol coverage of an input set is the fraction of unique symbolic
nodes of the grammar graph that are present across its derivation trees.

Perhaps a noteworthy detail is that the symbol coverage is always in the (0, 1]
range. It cannot be zero because any derivation treewill have at least one terminal
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node, which will find its correspondence in the grammar graph. The coverage
also cannot exceed one because no derivation tree can contain nodes that are
not part of the grammar graph. Based on this information, we can say that a set
of inputs 𝑆 achieves full symbol coverage if 𝑠𝑦𝑚𝑐𝑜𝑣(𝑆) = 1.

2.5.2 𝑘-Path Coverage
While the symbol coverage can provide us with insights into the nature of inputs,
these insight are rather limited. To showcase some shortcomings, consider a
fuzzing scenario in which we want to fuzz a calculator program for arithmetic
expressions. Referring again to our grammar from Figure 1.1, let us assume we
have the two inputs “(𝑥 + 2) ∗ 5” and “(𝑥 ∗ 2) + 5”.

These two inputs will cause our calculator to use different code paths because it
will attempt to apply the distributive rule to the first input, whereas the second
input can no longer be simplified and must be processed as is.

Unfortunately for us, the symbol coverage for these two inputs is identical. Even
though their derivation trees have a different structure, they share the exact
same set of symbolic nodes, and the way they are arranged is of no consequence
to the symbol coverage measure. Figure 2.5 shows the two trees side by side.

If we want to be able to reason about the structure of inputs, then we must
additionally consider the symbols’ location inside their context. In this particular
case, for example, we might want to express that one input has the “+” inside a
parenthesized context, while the other has it on the outside. Note that in both
cases, it is the same "+"10 node with the same identifier, only it is located in a
different context in the respective derivation trees.

One way to uniquely identify the context of a node inside a tree is by considering
the path from the root to the node in question. Continuing our example, let us
inspect the paths to the "+"10 node in the two derivation trees. For the input
“(𝑥 + 2) ∗ 5”, the path is AddExpr0 → MultExpr2 → MultExpr13 → UnaryExpr8
→ AddExpr36 → "+"10 if we leave out the synthetic nodes for convenience. For
the second input “(𝑥 ∗ 2) + 5”, the path is merely AddExpr0 → "+"10.

The two paths already differ in the parent of the node in question, so considering
the entire path from the root seems excessive. In fact, if our goal is to simply
differentiate between a “+” inside and outside parentheses for testing our calcu-
lator, we would still want to consider the "+"10 nodes as equal in the two inputs
“(𝑥 + 2)” and “((𝑥 + 2))”. However, if the entire path counts as the context, this
goal cannot be achieved.

Therefore, we want to be able to express a context that is just large enough to
be relevant but at the same time small enough so as not to over-specialize. At
the same time, we can clearly recognize that the size of the context is heavily
dependent on the use case, which is why we choose to make the size a user-
adjustable parameter in the upcoming formalizations.
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b / Derivation tree for the input “(𝑥 ∗ 2) + 5”.

Figure 2.5 / Derivation trees for two inputs that have different structures but share the same symbol coverage.
Only symbolic nodes are shown here for reasons of simplicity and space.
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Definition 6: 𝑘-Path

Let 𝑥 be a grammar graph or a derivation tree, and 𝑘 a positive natural
number. Then a 𝑘-path shall be a path in 𝑥, containing exactly 𝑘 symbolic
nodes, and whose beginning and end are symbolic nodes.

We have already seen examples of 𝑘-paths above, when comparing the contexts
of the "+"10 node in the two inputs “(𝑥 + 2) ∗ 5” and “(𝑥 ∗ 2) + 5”. Note
that 𝑘-paths need not start at the root node, so if we were to consider only 2-
paths for comparing the two inputs, we would observe that the first has the
2-path AddExpr36 → "+"10, while the context of the "+"10 in the second input is
AddExpr0 → "+"10. Clearly, setting 𝑘 = 2 is sufficient for this use case.

Furthermore, both “(𝑥 +2)” and “((𝑥 +2))” would have the same 2-path context
AddExpr36 → "+"10, making them indistinguishable, exactly as desired. If we
wanted to make the distinction between these two parenthesized constructs, we
would have to increase the value of 𝑘 to at least 5. This is because the doubly
parenthesized input has an extra loop through the MultExpr2 → UnaryExpr8 →
AddExpr36 nodes, so we require at least a 5-path, which includes the "+"10 itself
as well as one node before the loop, to tell them apart.

Now that we know what it means for a symbol to have a context of a given size,
we can use this notion to measure the makeup of inputs in a way that is sensitive
to such contexts. Again, let us first define a way to enumerate these contexts:

Definition 7: Unique 𝑘-Paths

Let 𝑥 be a grammar graph or a derivation tree, and 𝑘 a positive natural
number. Then 𝑝𝑎𝑡ℎ𝑠𝑘(𝑥) shall be the set of unique 𝑘-paths that exist in 𝑥.

From here, we can proceed in a similar fashion to how we introduced symbol
coverage to introduce the context-aware 𝑘-path coverage of an input:

Definition 8: 𝑘-Path Coverage

Let 𝑘 be a positive natural number, 𝐺 a grammar graph, and 𝑑 a derivation
tree of the given input 𝑖 that was parsed according to 𝐺.

Then 𝑝𝑎𝑡ℎ𝑐𝑜𝑣𝑘(𝑖) shall be the 𝑘-path coverage of 𝑖 computed as follows:

𝑝𝑎𝑡ℎ𝑐𝑜𝑣𝑘(𝑖) =
∣𝑝𝑎𝑡ℎ𝑠𝑘(𝑑)∣
∣𝑝𝑎𝑡ℎ𝑠𝑘(𝐺)∣

Similarly to what we had before, the 𝑘-path coverage of an input is the fraction
of unique 𝑘-paths of the grammar graph that are present in its derivation tree.

Returning to the example input “𝑥 + 42” and its derivation tree in Figure 2.3, we
can compute its 2-path coverage. Let us start by enumerating the unique 2-paths
contained in the derivation tree:
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1. AddExpr0 → AddExpr5
2. AddExpr5 → MultExpr2
3. MultExpr2 → UnaryExpr8
4. UnaryExpr8 → Identifier16
5. Identifier16 → "x"39
6. AddExpr0 → "+"10

7. AddExpr0 → MultExpr7
8. MultExpr7 → UnaryExpr8
9. UnaryExpr8 → DecDigits22
10. DecDigits22 → DecDigit42
11. DecDigit42 → "4"48
12. DecDigit42 → "2"46

As we can see, the tree contains twelve distinct 2-paths. The grammar graph, on
the other hand, contains 125 unique 2-paths.3 This leaves us with 𝑝𝑎𝑡ℎ𝑐𝑜𝑣2(“𝑥 +
42”) = 12/125, or a 2-path coverage of 9.6 %.

And again, as we did before, we can extend the definition of 𝑘-path coverage so
that it, too, applies to a set of inputs instead of just one:

Definition 9: 𝑘-Path Coverage of an Input Set

Let 𝑘 be a positive natural number, 𝐺 a grammar graph, and 𝐷 a set of
derivation trees corresponding to the inputs 𝑆, parsed according to 𝐺.

Then 𝑝𝑎𝑡ℎ𝑐𝑜𝑣𝑘(𝑆) shall be the 𝑘-path coverage of 𝑆 computed as follows:

𝑝𝑎𝑡ℎ𝑐𝑜𝑣𝑘(𝑆) =
∣⋃{𝑝𝑎𝑡ℎ𝑠𝑘(𝑑) ∣ 𝑑 ∈ 𝐷}∣

∣𝑝𝑎𝑡ℎ𝑠𝑘(𝐺)∣

Defined this way, the 𝑘-path coverage will always produce values that are in the
[0, 1] range. This time, zero is included because a derivation tree might be too
short to even contain 𝑘-paths for a given 𝑘, whereas the grammar graph can fit
them just fine by going through a cycle. Analogously to symbol coverage, we
can say that a set of inputs 𝑆 achieves full 𝑘-path coverage if 𝑝𝑎𝑡ℎ𝑐𝑜𝑣𝑘(𝑆) = 1.

It might also be worth noting that while the number of 𝑘-paths in a grammar
graph is always finite, it tends to increase exponentially with the value of 𝑘. For
example, our JavaScript expression grammar graph from Figure 2.2 contains
39 1-paths, 125 2-paths, 523 3-paths, 2331 4-paths, and 10245 5-paths.

It is no coincidence that the number of 1-paths is the same as the number of
symbolic nodes that we have seen earlier. In fact, recalling Definition 6 and
setting 𝑘 = 1, we achieve 𝑝𝑎𝑡ℎ𝑠1(𝑥) = 𝑠𝑦𝑚(𝑥). Therefore, we can conclude that
𝑘-path coverage is powerful enough to express symbol coverage. And that is one
formalism fewer we have to lug around, which cannot fail to make us happy.

2.5.3 Coverage Subsumption
Given that in order to cover 𝑘-paths with a higher value of 𝑘, more and larger
inputs must be generated, one might wonder if achieving full 𝑘-path coverage
for a higher 𝑘 also automatically gives us full 𝑘-path coverage for all lower 𝑘.

Consider a scenario like the one given in Figure 2.6, where Figure 2.6a shows
a very simple grammar graph, and two derivation trees corresponding to this

3At least that is what my implementation says. I choose to trust it on this one.
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a / A simple grammar graph.
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c / The right tree.

Figure 2.6 / Disproving the subsumption relationship between 𝑘-path coverages. The
right tree achieves full 3-path coverage, but it alone does not suffice to achieve full
1-path and 2-path coverage. Therefore, 𝑘-path coverages with higher values of 𝑘 do
not subsume those with lower 𝑘.

graph are given in Figures 2.6b and 2.6c. As a matter of fact, these are the only
two possible derivation trees that belong to this grammar graph.

If we now seek to achieve full 2-path coverage, wewill inevitably also achieve full
1-path coverage because we have to generate both trees to get all three existing
2-paths a → b , a → c , and c → d . Generating the two trees gives us
all four symbolic nodes, and thus also full 1-path coverage. We can say that the
2-path coverage fully subsumes the 1-path coverage.

One could expect that given 𝑖 < 𝑗, the 𝑗-path coverage will always subsume the
𝑖-path coverage. However, such a subsumption relationship does not hold in the
general case.

Considering the 3-path coverage, we see that there is only one 3-path available:
a → c → d . We only need to generate the right derivation tree given in
Figure 2.6c to reach this 3-path. This waywe are still missing the b node, which
is a necessary requirement for both the 1-path and 2-path coverages.

Interestingly, achieving full 1-path or 2-path coverage actually also gives us
full 3-path coverage. Therefore, in this particular case, both the 1-path and the
2-path coverage are the ones fully subsuming the 3-path coverage.

In turn, this might lead us to suspect that for 𝑖 < 𝑗, it is the 𝑖-path that subsumes
the 𝑗-path. However, consider the setting pictured in Figure 2.7, where Figure 2.7a
gives a small grammar graph that contains a back-reference, which results in
a cycle. The derivation tree given in Figure 2.7b achieves full 1-path coverage
because it contains all symbolic nodes. However, to attain full 𝑘-path coverage
for any 𝑘 > 1, we expect to see a 𝑘-path containing 𝑘 contiguous occurrences of
the a’ reference. Full 2-path coverage requires a’ → a’ , while for 3-path it is
a’ → a’ → a’ , and so on.

From these examples, we can safely conclude that in the general case there is no
subsumption relationship between the different 𝑘-path coverages.
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Figure 2.7 / Further disproving the subsumption relationship between 𝑘-path coverages. The
derivation tree achieves full 1-path coverage, but it does not achieve full 𝑘-path coverage
for 𝑘 > 1. Therefore, 𝑘-path coverages with lower values of 𝑘 do not subsume those with
higher 𝑘 .



Chapter 3

Systematically Covering Input
Features

Up until now, we were concerned with how to quantify features of already
existing inputs. However, in the context of fuzzing, we are especially interested
in creating inputs that are rich in such features. Since 𝑘-paths signify instances
of meaningful symbols located in a particular context, it is desirable for us to
generate inputs exhibiting as many of them as possible, and preferably even all
of them.

3.1 Generating Rich Inputs
From the way we introduced 𝑘-paths in Definition 7 we can see that the set of
𝑘-paths is readily available to be enumerated for any given grammar. Therefore,
it should also be possible to construct an algorithm that systematically produces
a forest of derivation trees that, together, contain all 𝑘-paths. An algorithm for
doing just that is given as Algorithm 1.

In the name of terseness, and to avoid not being able to make heads or tails of
𝑘-paths, let us first introduce the following useful definition:

Definition 10: Head and Tail

Let 𝑘 be a positive natural number and 𝑝 a 𝑘-path, consisting, in-order, of
nodes 𝑛𝑖 for 0 ≤ 𝑖 < 𝑘.

Then we set ℎ𝑒𝑎𝑑(𝑝) = 𝑛0 and 𝑡𝑎𝑖𝑙(𝑝) = 𝑝′, where 𝑝′ consists, in-order, only
of nodes 𝑛𝑖 for 1 ≤ 𝑖 < 𝑘.

In short, the head of a 𝑘-path is its first node, while its tail consists of the rest.

Let us now familiarize ourselves with how the algorithmworks. Given a positive
natural number 𝑘 and a grammar graph 𝐺, the algorithm begins by storing all
𝑘-paths available in 𝐺 into a list 𝑃. It then iterates over this list, generating for

27
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Algorithm 1 The 𝑘-Path Algorithm
1: function GenerateKPaths(grammar graph 𝐺, positive natural number 𝑘)
2: forest ← {}
3: 𝑟 ← 𝑟𝑜𝑜𝑡(𝐺)
4: 𝑃 ← 𝑝𝑎𝑡ℎ𝑠𝑘(𝐺) ▷ Enumerate all 𝑘-paths as per Definition 7
5: while 𝑃 ≠ {} do
6: 𝑡 ← 𝑡𝑟𝑒𝑒(𝑟) ▷ Start new derivation tree rooted at 𝑟
7: 𝑠 ← child slot of 𝑟
8: 𝑝 ← remove next 𝑘-path from 𝑃 ▷ Select next 𝑘-path to pursue
9: if ℎ𝑒𝑎𝑑(𝑝) = 𝑟 then

10: 𝑝 ← 𝑡𝑎𝑖𝑙(𝑝)
11: while 𝑝 is not empty do
12: 𝑛 ← expansion of 𝑠
13: Add 𝑛 to 𝑡 by filling slot 𝑠
14: if 𝑛 = ℎ𝑒𝑎𝑑(𝑝) then
15: 𝑝 ← 𝑡𝑎𝑖𝑙(𝑝)
16: if 𝑝 is not empty then
17: 𝑠 ← child slot of 𝑛 with shortest derivation path to ℎ𝑒𝑎𝑑(𝑝)
18: 𝑡 ← CloseOff(𝐺, 𝑡) ▷ Finalize 𝑡 by expanding all unfilled slots
19: forest ← forest ∪ {𝑡}
20: Remove from 𝑃 all 𝑘-paths found in 𝑡
21: return forest

each 𝑘-path 𝑝 a new derivation tree 𝑡, whose root node 𝑟 is the same as the root
node of the grammar graph.

For each such tree, the algorithm maintains the current slot 𝑠 that needs to be
filled next to reach 𝑝. Initially, it is the single child slot of the root node 𝑟.

As long as the algorithm has not yet succeeded in deriving the 𝑘-path 𝑝 as part
of the current tree in Line 11, it proceeds to expand the slot 𝑠 into the node 𝑛 and
if it is indeed equal to the next element of the targeted 𝑘-path (i.e., ℎ𝑒𝑎𝑑(𝑝)), and
not just a synthetic node on the way to it, we remove 𝑛 from the 𝑘-path 𝑝, thus
shortening it so that we come closer to completing our current target.

The newly created node 𝑛 is added to the tree 𝑡 by filling slot 𝑠, but it comes with
unfilled slots of its own, one of which now must replace 𝑠. For this, in Line 17
the algorithm chooses the one slot that brings it to the next missing node fastest.

After the loop in Lines 11 to 17 finishes, we are left with a partial tree 𝑡 which
contains only the derivation of our targeted 𝑘-path, andwhichmust be completed
to represent a valid input. This task is handed off to a close-off algorithm in
Line 18, which gives us certain flexibility as the 𝑘-path algorithm itself is rather
agnostic of how this part is handled.

Finally, the completed tree is added to our growing forest, whichwill be returned
as the output, and the algorithm is ready to target the next not yet reached 𝑘-path.

However, if we recall our observations from Section 2.5.2, we may notice that the
number of 𝑘-paths may grow exponentially with the size of the grammar graph.
Since we would very much like to avoid having to generate exponentially many
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Figure 3.1 / The 𝑘-path algorithm considers
the choice between the two acceptable
alternatives and chooses the ∼ node
because its distance to the target "+"10
node is shorter.

files to encompass all 𝑘-paths, in Line 20 we simply remove from 𝑃 all 𝑘-paths
that we happened to produce “by accident” while on our way to generating 𝑝 or
closing off the current tree. This simple trick dramatically reduces the number
of trees generated by this algorithm.

3.1.1 Example Generation Walkthrough
Let us now walk through an example derivation to better understand what
decisions the algorithm makes and how it makes them. Let us assume that
we have called the algorithm with 𝐺 being the JavaScript expression grammar
graph from Figure 2.2 and 𝑘 = 2, and that in Line 8 the value of 𝑝 has become
the 2-path AddExpr0 → "+"10. Then, our target path is removed from the set of
not yet reached 2-paths 𝑃, and a new derivation tree is created starting with an
AddExpr0 node, whose slot for its only child node | becomes 𝑠 in Line 7.

Here, we have triggered the edge case in Line 9, where the first node in our
targeted 2-path is the root node, so we remove it from 𝑝 before proceeding
because our sapling already contains 𝑟 by definition.

At this point, the remaining not yet reached path 𝑝 consists only of the "+"10 node.
In Line 12 𝑠 is expanded into a | node 𝑛, which we then add to 𝑡 in Line 13.

Since 𝑝 still contains the "+"10 node, we have to choose which of the child slots
of 𝑛 will replace 𝑠 in Line 17. Looking at the graph in Figure 2.2, in this case it is
the slot for the ∼ node because its distance to "+"10 is two, as opposed to the
alternative MultExpr2, whose distance is nine as shown in Figure 3.1.

In the next iteration, we enlarge 𝑡 by the ∼ node, and have to choose the next 𝑠
in Line 17 from its child slots for AddExpr5, another | , and MultExpr7. Here,
we choose the slot for the | node because it leads us to "+"10 fastest.

In a later iteration, we get to expand the | node to be the "+"10 node, which
lets us remove it from 𝑝 in Line 15, thus rendering the currently targeted 2-path
empty and exiting from the loop.

Since we have already reached our current goal, we hand off the task of complet-
ing the tree by expanding all outstanding slots to a close-off algorithm in Line 18.
For instance, if we are interested in creating inputs that are terse, we might opt
to use an algorithm that always produces the shortest possible derivations.

After the close-off is finished and we have obtained a complete tree in 𝑡, which in
our example could correspond to an input like “x+y”, we add it to our collection
in forest, and very importantly, prune all 2-paths found in 𝑡 from 𝑃.
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In this case, 𝑡 would contain such paths as AddExpr0 → AddExpr5 and AddExpr0
→ MultExpr7, for which we no longer have to create their own trees, making the
outer loop in Line 4 finish that much faster.

3.1.2 Avoiding Boundless Growth
So far, we have left the choice of the close-off procedure in Algorithm 1 entirely
open. However, in practice, we are usually interested in avoiding boundless
growth and useless repetitions. Algorithm 2 shows away to generate the shortest
possible inputs in terms of required expansions.

Algorithm 2 Shortest Tree Generation
1: function ShortestTree(grammar graph 𝐺, derivation tree 𝑡)
2: 𝑄 ← { unfilled slots in 𝑡 }
3: while 𝑄 ≠ {} do
4: 𝑠 ← a slot removed from 𝑄
5: 𝑛 ← expansion of 𝑠
6: Add 𝑛 to 𝑡 by filling 𝑠
7: if 𝑛 is an alternation then
8: 𝑄 ← 𝑄 ∪ { child slot of 𝑛 with least required derivation steps }
9: else

10: 𝑄 ← 𝑄 ∪ { all required child slots of 𝑛 } ▷ Skip optional elements
11: return 𝑡

This algorithm is given a grammar graph 𝐺 and an incomplete derivation tree 𝑡
as inputs. It begins by identifying the set 𝑄 of all outstanding slots that still need
to be filled for the tree to become complete. Its main loop in Line 3 proceeds
to fill these slots until none remain. Whenever a new node 𝑛 is instantiated to
grow the tree 𝑡, its child slots are inspected and added to 𝑄 if appropriate.

Specifically, if 𝑛 is an alternation node, in Line 8 only one of its children may exist
in a valid derivation tree, and therefore its shortest alternative is added to 𝑄.
In this context, “shortest” refers not to the length of the resulting input string,
but rather to the number of expansions that have to be made until the subtree
is completed. In case multiple alternatives share the same shortest possible
derivation, a uniform selection takes place to pick the slot to be added to 𝑄.

Should 𝑛 be a quantification node whose lower repetition limit is zero, nothing
is added in Line 10 because this choice produces the shortest possible derivation
from this node. In all other cases all child slots of 𝑛 are added to 𝑄, as they
represent the necessary expansions that make up a valid derivation tree and are
thus indispensable.

After the loop in Lines 3 to 10 finishes, we obtain a completed shortest tree in 𝑡,
which is then returned.

While a way to generate minimal inputs can certainly find its use cases such
as the one in [127], for the practical purposes of fuzzing, where we do not
necessarily require easy human interpretability of the generated inputs, we
might be interested to make another trade-off between size and feature-richness.
For example, we might want to consider a global threshold depth, which our
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inputs must not exceed. This way we achieve more freedom in the choice of
expansions that do not lie on the critical path because we do not need to always
follow the shortest possible derivation. In turn, generating non-minimal trees
may lead to the inclusion of more features into the trees that we create, albeit
inadvertently.

Algorithm 3 Bounded Tree Generation
1: function BoundedTree(grammar graph 𝐺, derivation tree 𝑡, depth limit 𝑑)
2: 𝑄 ← { unfilled slots in 𝑡 }
3: while 𝑄 ≠ {} do
4: 𝑠 ← a slot removed from 𝑄
5: 𝑛 ← expansion of 𝑠
6: Add 𝑛 to 𝑡 by filling 𝑠
7: if 𝑛 is an alternation or optional quantification then
8: 𝑄 ← 𝑄 ∪ { a child slot of 𝑛 fitting in 𝑑 }
9: else

10: 𝑄 ← 𝑄 ∪ { child slots of 𝑛 }
11: return 𝑡

Algorithm 3 presents a way to achieve such bounded generation. Except for the
additional depth limit parameter, this algorithm shares much of its structure
with the shortest path algorithm.

In fact, the two algorithms differ in the way newly expanded alternations and
optional quantifications are handled. The choice of the child slot for alternations
in Line 8 is limited to those alternatives whose shortest required subtree will
certifiably fit into the depth limit, considering the depth at which the parent
node itself is located. This same condition is applied to the single child slot of a
quantification whose minimal repetition count is zero.

Note however, that as opposed to always going for the minimal number of
repetitions, in Algorithm 3 fitting child slots of quantifications may be added
multiple times.

Also, in Line 8 a slot is chosen at random, however, it is possible to influence the
behavior of the algorithm by using a heuristic instead. For example, one could
imagine a selection in a least-recently-used order to enhance the variance of the
generated inputs.

Using bounded generation as the close-off for Algorithm 1 requires a slight
modification of the call site in that the desired depth limit must be passed along
with the other parameters, however, this change is trivial to implement. In fact,
when first introducing the 𝑘-path algorithm in [51] the bounded close-off variant
is used inline as part of the main procedure.

Note how using either of these algorithms as the close-off call in Line 18 of Algo-
rithm 1 avoids boundless growth by construction because the 𝑘-path algorithm
always takes the shortest derivation route until the targeted path is covered, and
then closes off peripheral subtrees with size-limited derivations otherwise.

While only two possible close-off algorithms are presented here, thanks to the
pluggable design, it is rather straightforward to imagine others taking their
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place, such as random or probabilistic generators, or even another instance of
the 𝑘-path algorithm itself.

3.1.3 Additional Modifications
Algorithm 1 leaves out one important detail: In Line 8 the order in which the
next 𝑘-path is picked is omitted. In practice, the order in which the algorithm
aims to reach all 𝑘-paths influences the number of inputs that must be generated.

While in theory any heuristic would be applicable here as well, in practice, using
random choice seems appropriate, especially considering a comparison against
other random fuzzers as part of an empirical evaluation.

Further, there is a slight peculiarity in how the 𝑘-path algorithm handles optional
quantifications – or rather how it does not handle them. When a derivation
rule explicitly encodes the possibility of some part of the input to be absent,
this absence can be reasonably treated as a feature on its own, thus making it
a desirable derivation to generate. The way it is presented in Algorithm 1, the
𝑘-path algorithm does not explicitly offer support for this use case, however, it
is possible to approach this problem from another angle. Specifically, a quan-
tification of the form foo{0,n} can be rewritten as an alternation using an empty
literal: "" | foo{1,n}.

Applying this modification to the input grammar allows the 𝑘-path algorithm to
explicitly aim for generating empty expansions of optional elements without
intruding too much on any intent behind the exact formulation of the textual
grammar representation.

3.1.4 Requirements
The algorithms presented here owe their terseness to several requirements on
the input grammars, which, albeit being perfectly reasonable, have not been
explicitly stated. The following aims to address this omission.

Reachability All derivation rules in the grammar must be reachable from the
root node, i.e., for every node 𝑛 in the grammar graph, there must exist a
sequence of slot expansions ending in 𝑛 and starting from the root slot of
the grammar.

Productivity All derivation rules are required to be productive, i.e., for every
node 𝑛, there must exist a finite sequence of slot expansions, after which
the subtree rooted at 𝑛 has all its slots filled.

In the practical implementation of the 𝑘-path algorithm, the first phase is dedi-
cated to checking the above properties, raising appropriate exceptions in case
of violation. For a grammar engineer designing a grammar, this functionality
provides a fast initial error feedback.

In addition to the above requirements, some algorithms assume the existence of
auxiliary data structures that can be pre-computed statically:

▪ The reachability map contains for every node 𝑛 a list of all nodes that are
reachable from it, and in how many derivation steps.
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▪ Every node stores shortest derivation information that indicates the least
number of slot expansions that need to happen before the subtree rooted
at this node contains no more unfilled slots.

3.1.5 Implementation Details
The 𝑘-path generation algorithm has been implemented as an application called
tribble. It is written in the Scala programming language and its code is openly
available in a repository on GitHub [47]. In order to function, the tribble tool
only requires a Java 11 runtime or later.

As itsmain input, tribble takes a file containing a context-free grammarwritten in
the notation outlined in Section 2.2. After parsing and turning it into a grammar
graph, the tool is capable of outputting a set of inputs that achieve full 𝑘-path
coverage using the method outlined in Algorithm 1.

The implementation is highly configurable, easily extensible, and comes with
many optimizations and customizations. For example, beside the necessary
reachability and productivity checks as described in Section 3.1.4, tribble can
detect duplicate alternatives, or automatically merge concatenations of literals
into single literals to reduce the number of nodes in the grammar graph.

Further, in addition to the heuristics and configurable modifications mentioned
in Sections 3.1.2 and 3.1.3, tribble comes with implementations of multiple
generation algorithms, which allows it to be used as a practical evaluation base
for empirical fuzzing comparisons.

Apart from providing the implementation of the 𝑘-path algorithm, tribble is
used as the technical base in several additional works, including the probabilistic
fuzzing [114], and Alhazen [65] projects. This is possible thanks to tribble’s
well-designed grammar model and readily available documentation.

3.2 Evaluating 𝑘-Path Generation
Now that we have established a way of systematically covering 𝑘-paths, we
want to study its effects on testing as compared to regular grammar-based fuzz
testing. We compare our approach against the grammar-based input generator
Grammarinator [54], which can be considered state of the art at the time of our
implementation.

Grammarinator expects its grammars to be in the format defined by the ANTLR
parser generator [100]. Therefore, for our experiments we selected the grammars
of popular and well known languages, among other sources, from a popular
GitHub repository hosting a variety of ANTLR grammars [38], and manually
translated them into the format required by tribble as consistently as possible, i.e.,
only changing their notation and refraining from any refactoring or optimizing.
Specifically, we chose the grammars for JSON [16], URL [124], CSV [26], and
Markdown [79].

Table 3.1 provides a comparison of the grammars in terms of the number of
productions as well as the average number of inputs produced by the 𝑘-path
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Table 3.1 / Grammars and Sizes.

Grammar Productions
Average # of inputs generated

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 5
JSON [16] 17 40 35 58 201
CSV [26] 12 42 38 51 221
URL [124] 27 43 45 72 552
Markdown [79] 236 653 980 1880 11409

algorithm as defined in Algorithm 1 when using bounded random generation
from Algorithm 3 as the close-off procedure.

Perhaps an interesting observation about Table 3.1 is the fact that for JSON and
CSV covering 𝑘 = 2 requires generating fewer files than for 𝑘 = 1. As we have
established previously in Section 2.5, 1-path coverage corresponds to simply
covering all symbols in the grammar. This means that when generating trees,
the 𝑘-path algorithm is only trying to derive single symbolic nodes regardless
of their context, and thus has no incentive to generate derivation trees that are
deep because as soon as it attains a targeted node, the close-off is taking over.
As both these grammars are rather shallow, the close-off phase terminates soon
and does not cover many outstanding 1-paths “accidentally”. This way, the
main algorithm happens to create many trees to reach every symbol. This effect
disappears for larger values of 𝑘 because the 𝑘-path algorithm is now required
to produce trees that are at least of depth 𝑘, which is why more 𝑘-paths are
encountered along the way.

3.2.1 Test Subjects
We carry out our experiments on the open-source projects listed in the leftmost
column of Table 3.2. The selection consists of some of the top search results
among open-source projects consuming the previously selected formats.

For the JSON language, almost all our subjects are parsers, except for some
notable exceptions: jackson-databind, genson, gson, fastjson additionally
allow data-binding for automatic serialization and deserialization of JSON ob-
jects from and into data classes. The subjects json-flattener and pojo serve
the purpose of flattening a JSON structure and generating Java source code,
respectively.

The subjects for CSV are all parsers capable of data-binding. However, our
tests only engage the part of their functionality related to parsing because it is
impractical to pre-generate data classes for dynamically generated inputs. The
same holds for the data-binding JSON subjects.

For URL, the projects galimatias and jurl are pure parsers, while autolink
and url-detector additionally detect URLs inside arbitrary plain text before
parsing them into their constituent parts.

Our subjects for the Markdown format concern themselves with rendering their
inputs into HTML fragments that are suitable for display inside a web browser.
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Since most of the subjects are libraries, they require a test harness to process
inputs. For each of the subjects we implemented a launcher which instantiates
the necessary structures, sets any available options, and feeds an input file into
the main API functions covering the documented use cases. In cases where
the subject is an executable, the launcher is simply a wrapper around its main
method.

3.2.2 Experimental Setup
Our competitor fuzzer Grammarinator requires two parameters: 𝑑 and 𝑛, the
maximumdepth and number of the derivation trees to be generated, respectively.
For a fair comparison, we first run the 𝑘-path algorithm with a given 𝑘, and
take the number of the generated inputs to be 𝑛 for a corresponding run of
Grammarinator. We set the depth 𝑑 to 30 for both tools because we found
this number in the configuration repository [35] provided by the authors of
Grammarinator. Further, we set the parameter --cooldown to 0.9 and add
a simple_space_transformer as described in [54]. Due to randomness, we
repeat the invocation of each algorithm 50 times. We repeat the above setup for
several different values of 𝑘 to investigate the influence of the path length.

3.2.3 Evaluation Results
We subdivide our findings into two categories: code coverage and defect de-
tection. The former provides an established and well-recognized metric for
comparing the performance of any sort of test generator, while the latter can
give valuable insights into the impact of testing in real-world scenarios.

Code Coverage

Table 3.2 shows the average branch coverage achieved by each tool over 50 runs.
Since all our subjects are targeting the Java platform, we use the JaCoCo tool [55]
to gather coverage data by means of offline bytecode instrumentation. The
subjects are given in Table 3.2 and are grouped by the grammar describing the
language of their inputs: JSON, CSV, URL, andMarkdown. The columns labeled
as 𝑘-path show the average branch coverage achieved with inputs generated by
the 𝑘-path algorithm with the given value of 𝑘.

The columns labeled as gramm𝑘 show the average branch coverage for runs
of Grammarinator that were carried out with the 𝑛 parameter mirroring the
number of inputs that were produced by runs of 𝑘-path with the given 𝑘. For
example, if an invocation of 2-path produced a set of 10 inputs, the corresponding
gramm2 run would also consist of 10 inputs.

Note that for each 𝑘, the values in Table 3.2 represent the average of 50 such
corresponding pairs rounded to four decimals. To investigate if these average
values do, in fact, indicate that one of the approaches consistently outperforms
the other, we carried out a statistical significance analysis using the two-sided
Mann–Whitney U test [80] as implemented in the Python SciPy library [128].
In Table 3.2, the significantly different entries (all but six) are shown in bold.



36
CH

A
PTER

3.
SYSTEM

ATICA
LLY

CO
V
ERIN

G
IN

PU
T
FEATU

RES

Table 3.2 / Average branch coverage achieved by tribble and Grammarinator.

Subject 1-path gramm1 2-path gramm2 3-path gramm3 5-path gramm5

argo [8] 0.4116 0.4000 0.4187 0.3963 0.4197 0.4092 0.4242 0.4187
fastjson [2] 0.0364 0.0376 0.0404 0.0374 0.0413 0.0388 0.0431 0.0414
genson [19] 0.0842 0.0866 0.0886 0.0864 0.0902 0.0883 0.0916 0.0905
gson [44] 0.2080 0.2215 0.2264 0.2213 0.2294 0.2266 0.2352 0.2371
jackson-databind [59] 0.0886 0.0926 0.0932 0.0924 0.0938 0.0935 0.0940 0.0952
json-flattener [61] 0.5039 0.6246 0.6828 0.6235 0.7127 0.6609 0.7809 0.7475
json-java [72] 0.1093 0.1377 0.1457 0.1310 0.1661 0.1441 0.1890 0.1733
json-simple [62] 0.4427 0.4695 0.4870 0.4662 0.4931 0.4836 0.5093 0.5062
json-cliftonlabs [76] 0.3355 0.3325 0.3445 0.3301 0.3446 0.3410 0.3478 0.3546
minimal-json [117] 0.4158 0.3970 0.4267 0.3936 0.4163 0.4054 0.4174 0.4166
pojo [75] 0.1246 0.1414 0.1428 0.1423 0.1597 0.1433 0.2112 0.1462
commons-csv [4] 0.3828 0.3773 0.3903 0.3772 0.3984 0.3770 0.4034 0.3799
jackson-csv [58] 0.1665 0.1527 0.1666 0.1523 0.1700 0.1532 0.1777 0.1573
jcsv [60] 0.3287 0.3167 0.3337 0.3152 0.3374 0.3201 0.3400 0.3270
sfm-csv [112] 0.0628 0.0686 0.0664 0.0686 0.0675 0.0686 0.0682 0.0686
simplecsv [113] 0.3472 0.3377 0.3482 0.3368 0.3481 0.3395 0.3489 0.3439
super-csv [119] 0.1560 0.1433 0.1589 0.1423 0.1646 0.1439 0.1646 0.1471
autolink [118] 0.4514 0.2861 0.4673 0.2861 0.5716 0.2859 0.6265 0.2889
galimatias [36] 0.0879 0.0343 0.0897 0.0341 0.0875 0.0346 0.0873 0.0356
jurl [111] 0.6790 0.6854 0.6807 0.6872 0.6933 0.6904 0.7095 0.7012
url-detector [106] 0.4057 0.3273 0.4083 0.3244 0.4188 0.3342 0.4352 0.3458
commonmark [10] 0.6678 0.6253 0.6991 0.6322 0.7183 0.6419 0.7335 0.6634
markdown4j [81] 0.6772 0.6817 0.7094 0.6851 0.7162 0.6931 0.7313 0.7129
txtmark [123] 0.6017 0.6144 0.6291 0.6174 0.6348 0.6237 0.6498 0.6413

JS
O
N

C
SV

U
RL

M
D

Values show the fraction of branches covered. All results are averages over 50 runs.
Bold values indicate significantly higher values according to the Mann–Whitney U test [80]. (𝑝 < 0.005)
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Our findings in Table 3.2 show that for 𝑘 = 1 the average coverage achieved by
inputs generated by the 𝑘-path algorithm roughly equates the one produced by
Grammarinator’s inputs across all subjects.

When considering only subjects consuming JSON inputs, Grammarinator still
outperforms tribble on all but three subjects. This is due to the 1-path algorithm
not being interested in actively covering any combinations and nesting of JSON
arrays and objects, which are responsible for triggering additional behavior in
the subjects.

When the context depth 𝑘 is set to 2, however, this disadvantage disappears as
tribble now covers more code in all but two subjects. Because this time 2-path
actively tries to cover pairs of elements, its code coverage is much higher than
the one achieved by 1-path.

Setting 𝑘 = 3 further strengthens the performance of 𝑘-path as it is now seeking
to cover all contexts of depth 3. Once again, there is an improvement over the
previous configuration.

Increasing the context depth to a value of 5 improves the achieved coverage over
the previous configurations, but this time, Grammarinator is beginning to catch
up again. To produce these additional combinations, however, more inputs had
to be generated by the 5-path generator (see Table 3.1), and so Grammarinator
also has a much higher generation budget 𝑛 as well.

An additional reason for this loss of advantage of the 𝑘-path generator with
growing 𝑘 (or an effect of diminishing returns, if you will) is due to contexts
deeper than a certain threshold no longer explicitly corresponding to variations
in the executed code.

For instance, in a typical recursively descending JSON parser, there is not much
difference in executed control flow between parsing nested JSON structures that
are nested two, three, or more times. However, there can still be some notion of
context encoded in the flow of data instead. For example, a counter could be
keeping track of the current nesting depth used for matching the correct number
of closing brackets. Changes in its state would not be reflected in code coverage,
even though it might still make sense to strive for testing some of the values the
counter can assume.

Our empirical investigation shows that the advantage of tribble over Grammar-
inator can be quite large. In the cases of autolink and galimatias, tribble
achieves about twice the coverage of Grammarinator, even for 1-path already.
There are no cases in which Grammarinator would outperform tribble by the
same margin.

As an aside, when it comes to performance considerations, both tools have ap-
proximately the samewind-up time that includes parsing the grammar, building
the in-memory model, and precomputing static information such as minimal
required derivation depth for all nodes. And while in theory the additional com-
putations that tribble has to perform to obtain its 𝑘-path generation agenda has
worst case runtime in 𝑂(|𝑉|2) with 𝑉 being the set of all nodes in the grammar
graph, we found that in practice there was barely any perceivable slowdown for
our grammars.
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In fact, tribble is oftentimes faster than Grammarinator because of the shortcuts
in the 𝑘-path algorithm. Once a deep derivation tree has been attained, all its
𝑘-paths are removed from the generation agenda, and thus we explicitly avoid
having to generate similar trees, which results in faster generation overall.

In our experiments, executing the test subjects turned out to be the real time
sink, with the evaluation process spending upwards of 99 % of its time on this
task. It is for this reason, and because it is simply practically more convenient,
that we ensure the fairness of our comparison by equating the number of input
files instead of the wall clock time.

Defect Detection

When generating test inputs, one must not forget why we test in the first place.
While code coverage is a well-known proxy measure of test quality, equally as
important is the tests’ ability to reveal defects. A test suite may consistently
achieve high coverage throughout the lifetime of a project without ever detecting
a single error or bug. Such a test suite is not impactful for the project and may
end up costing more in resources in maintaining it than it is worth.

During our experiments, we found a number of exceptions thrown by our test
subjects. In our setting, all of these faults are triggered by system inputs, so they
indicate real internal errors, that can occur in regular production use. When
considering which exceptions are indeed defects and not legitimate errors in
usage, we filter out those exception classes that are defined inside the subjects’
own packages assuming they represent expected user-facing error behavior.

Our observations are given in Table 3.3: For each subject in which exceptions
could be triggered, the exception, its origin, as well as its detection rate are given
for both tribble and Grammarinator. The detection rate shows in what fraction
of runs a given exception was triggered at least once at the given location.

The location unknown entry in the json-flattener subject is a result of our
test harness failing to provide a stack trace for this particular failure. The
InvalidSyntaxException thrown by argo, and ParseException thrown by
json-flattener, which are triggered exclusively by Grammarinator might
indicate a bug in Grammarinator’s implementation of input generation or in its
input grammar rather than in the subjects themselves. A similar effect can be
observed for both exceptions thrown by galimatias, but for tribble instead.

If we discount the four of these likely non-issues, we see that in the configuration
with 𝑘 = 1, the 𝑘-path algorithm is able to trigger three exceptions exclusively:
Two NullPointerExceptions and one StringIndexOutOfBoundsException,
none of which should ever be allowed to be thrown into user code as they
indicate fatal errors in the internal state.

With increasing 𝑘, the detection rate increases for both approaches, but it does so
more reliably for tribble: There are only two cases of regression for tribble, both
in the txtmark subject, while there are four for Grammarinator, distributed
over three subjects expecting three different input formats.

By the 5-path configuration, out of the 23 exceptions triggered, 3 are unique to
Grammarinator, 8 to tribble, and the remaining 12 were found by both.
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Our evaluation shows that in the average case, thanks to the systematic approach
to generating its inputs, tribble can be expected to detect issues more reliably
than an approach like Grammarinator, which is inherently randomized in its
generation choices.
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Table 3.3 / Exception Detection Rates.

Subject Exception Location
Detection Rate

1-path gramm1 2-path gramm2 3-path gramm3 5-path gramm5

argo argo.saj.InvalidSyntax argo…InvalidSyntaxRuntime$3:60 0% 76% 0% 76% 0% 84% 0% 100%
genson NullPointerException com…genson.stream.JsonWriter:414 100% 100% 100% 100% 100% 100% 100% 100%
json-flattener …json.ParseException com…wnameless…Flattener:122 0% 76% 0% 76% 0% 84% 0% 100%

NullPointerException com…wnameless…Unflattener:393 88% 90% 94% 88% 100% 94% 100% 100%
com…wnameless…Unflattener:409 4% 0% 6% 6% 10% 4% 22% 26%
location unknown 0% 0% 0% 0% 0% 0% 2% 0%

pojo StringIndexOutOfBounds org.jsonschema…NameHelper:46 98% 100% 100% 100% 100% 100% 100% 100%
commons-csv IOException org.apache.commons.csv.Lexer:281 100% 100% 100% 100% 100% 100% 100% 100%

org.apache.commons.csv.Lexer:288 100% 100% 100% 100% 100% 100% 100% 100%
jackson-csv CharConversionException com.fasterxml…CsvDecoder:429 0% 0% 0% 0% 2% 0% 4% 0%

com.faster…ParserBootstrapper:383 0% 0% 0% 0% 2% 0% 4% 0%
jcsv IllegalStateException com.googlecode…TokenizerImpl:73 100% 30% 100% 22% 100% 46% 100% 78%
sfm-csv IllegalStateException org…$NoColumnCsvWriterDSL:449 100% 100% 100% 100% 100% 100% 100% 100%
super-csv NullPointerException org…io.AbstractCsvWriter:177 0% 0% 0% 0% 0% 0% 2% 0%

org.supercsv.util.Util:187 34% 0% 38% 0% 76% 0% 52% 0%
galimatias MalformedURLException io.mola.galimatias.URL:527 100% 0% 100% 0% 100% 0% 100% 0%

URISyntaxException io.mola.galimatias.URL:509 92% 0% 94% 0% 96% 0% 96% 0%
jurl StringIndexOutOfBounds com.anthony…PercentEncoder:176 100% 0% 100% 0% 100% 0% 100% 0%
markdown4j StringIndexOutOfBounds org…Markdown4jProcessor:53 30% 100% 100% 100% 100% 100% 100% 100%
txtmark StringIndexOutOfBounds com…rjeschke.txtmark.Block:106 8% 34% 8% 30% 6% 62% 6% 98%

com…rjeschke.txtmark.Emitter:282 4% 100% 2% 100% 12% 100% 82% 100%
com…rjeschke.txtmark.Emitter:303 0% 0% 0% 0% 0% 0% 0% 4%
com…rjeschke.txtmark.Line:520 22% 76% 100% 88% 100% 98% 100% 100%
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Values show the percentage of runs in which the given exception was detected. Higher percentages are shown in bold.
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3.2.4 Threats to Validity
The experimental evaluation is empirical in nature, especially because both
Grammarinator and the 𝑘-path algorithm come with inherent randomness, and
therefore the observations naturally face threats to validity.

When it comes to external validity, we have examined 24 subjects as well as four
grammars, covering a variety of input and implementation features; while our
observations are consistent, we cannot claim generality of the results across all
programs and inputs. All our subjects are written in the Java programming
language, which might come with some constraints on the represented code
architecture and control structure paradigms. Additionally, we have opted to use
the most easily accessible sources of grammars for our subject formats. However,
variations in the formulation of derivation rules of a grammar might affect the
behavior of a fuzzing algorithm. At present, there is no systematic research into
the nature and extent of such effects.

In terms of internal validity, we have taken great care in validating our findings,
notably by using well-established tools for computing code coverage, statistical
significance, and validating grammar coverage during construction. We repeated
the experiment with different initial seeds to offset the effects of randomness that
is an essential element in both algorithms, and we used established techniques to
compute statistical significance of the observations. To ensure fidelity of results
we use the same initial conditions for both approaches in terms of the number
of input files. In addition, the entire tool chain from experiment configuration to
collected data is fully automated and tested, greatly mitigating the risk of human
error; all data and tools are available for external replication and validation.

3.3 Summarizing 𝑘-Path Generation
Let us recap what we have observed so far. We begin by introducing a practical
notation for context-free grammars and a graph representation that goes along
with it. From here, we establish the concept of 𝑘-paths as a means to characterize
variety in inputs by considering the context in which grammar symbols occur.

In the next step, we use this definition in a constructive manner for generating
inputs that contain all features described by 𝑘-paths for a given value of 𝑘.

Finally, we find empirical evidence of the efficacy of the proposed generation
algorithm in reaching code coverage and revealing defects. From the evaluation,
we can glean a sweet spot for the size of the context 𝑘 for practical purposes
of fuzzing. It appears to lie somewhere around 𝑘 = 3 and seems to produce
relatively small sets of small files that exhibit strong structural variety. Any less,
and we are not better than random grammar-based generation, any larger, and
we run into diminishing returns.
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Chapter 4

Correlating Input Coverage
with Code Coverage

So far, we have established that sets of inputs with full 𝑘-path coverage achieve
higher code coverage than random input sets of equal size. We have seen empir-
ical evidence to support this claim in Section 3.2, but at the same time, we have
also witnessed the effects of diminishing returns when choosing the context
size 𝑘 to be too high. Such a setting requires generating considerably more
inputs to reach full 𝑘-path coverage, and while the 𝑘-path generation algorithm
guarantees that all newly generated inputs contain as yet unseen 𝑘-paths, it does
in no way guarantee that these inputs will contain any more than just a single
new 𝑘-path each. In fact, if the close-off algorithm always chooses the shortest
possible derivations, the majority of the generated inputs will differ in only few
features. This effect on the number of inputs can be seen in Table 3.1.

It is important to note that the same holds to some extent irrespective of the
choice of the generation algorithm. The larger the size of the requested context,
the more conflicting choices must be made when deriving. In other words,
if an input contains a given large 𝑘-path, it is not likely to also contain many
other large 𝑘-paths because the larger the number of nodes in a path, the more
conflicting alternatives are part of it. Since a derivation tree can contain only one
alternative for each alternation at a time, it cannot possibly fit multiple 𝑘-paths
with such conflicting alternatives. Even if the grammar graph has a loop that
goes through the alternation in question, by construction it must introduce at
least one additional symbolic node, which in the majority of cases will not be
part of the requested 𝑘-paths. Therefore we can say that in general, the higher
the value of 𝑘, the more inputs are required to cover all 𝑘-paths.

However, the results from Section 3.2 leave open the question whether there is
a dependency between 𝑘-path coverage and code coverage. Therefore, in this
chapter we would like to analyze the nature of the relationship between 𝑘-path
coverage and code coverage.
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4.1 Empirical Evaluation
In the next experiment, we are guided by the following question: If high 𝑘-path
coverage leads to high code coverage, does, conversely, low 𝑘-path coverage lead
to low code coverage (i.e., is this dependency monotonic)? We now aim to find
out details of any such relationship if it exists.

4.1.1 Generating Inputs
To gather any empirical evidence, we first require a sufficient number of sets of
inputs that have 𝑘-path coverage ranging from almost none to full so that we
can measure the code coverage they induce in subject programs. As it happens,
we can adapt the original 𝑘-path algorithm to produce just such a batch of sets.
Algorithm 4 shows the approach. Since a set of trees is commonly referred to
as a forest, and the algorithm produces a set of forests, we shall refer to it as the
forestation algorithm.

Algorithm 4 The Forestation Algorithm
1: function Forestation(grammar graph 𝐺, positive natural number 𝑘)
2: sets ← {}
3: 𝑟 ← 𝑟𝑜𝑜𝑡(𝐺)
4: for all 𝑃 ⊆ 𝑝𝑎𝑡ℎ𝑠𝑘(𝐺) do ▷ Iterate over all subsets of the 𝑘-path set
5: forest ← {}
6: while 𝑃 ≠ {} do
7: 𝑡 ← 𝑡𝑟𝑒𝑒(𝑟)
8: 𝑠 ← child slot of 𝑟
9: 𝑝 ← remove next 𝑘-path from 𝑃

10: if ℎ𝑒𝑎𝑑(𝑝) = 𝑟 then
11: 𝑝 ← 𝑡𝑎𝑖𝑙(𝑝)
12: while 𝑝 is not empty do
13: 𝑛 ← expansion of 𝑠
14: Add 𝑛 to 𝑡 by filling slot 𝑠
15: if 𝑛 = ℎ𝑒𝑎𝑑(𝑝) then
16: 𝑝 ← 𝑡𝑎𝑖𝑙(𝑝)
17: if 𝑝 is not empty then
18: 𝑠 ← child slot of 𝑛 with shortest derivation path to ℎ𝑒𝑎𝑑(𝑝)
19: 𝑡 ← CloseOff(𝐺, 𝑡)
20: forest ← forest ∪ {𝑡}
21: Remove from 𝑃 all 𝑘-paths found in 𝑡
22: sets ← sets ∪ {forest}
23: return sets

In the 𝑘-path algorithm, as given in Algorithm 1, the main loop in Line 4 iterates
over all 𝑘-paths contained in the given grammar graph. We can instead produce
subsets of this initial set of 𝑘-paths, and then use the rest of the algorithm as is
to generate inputs that reach these subsets. Of course, we cannot guarantee that
the derivation trees generated in this way will not contain any additional 𝑘-paths
that are not contained in the requested subsets. Nevertheless, this approach
presents a practical solution for our purposes of acquiring test data.
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4.1.2 Experiment Setup
To acquire a significant number of forests displaying varying 𝑘-path and code
coverage, we repeat the invocation of Algorithm 4 ten times. Table 4.1 shows
the number of forests that were generated by the forestation algorithm for each
grammar after ten invocations. As for our test programs, we fall back on our
previous subjects which we have already seen in Table 3.2.

Table 4.1 / Experiment Size.

Grammar Forests
JSON 6421
CSV 111
URL 15 711
Markdown1 68 831

The experiment itself is quite straightforward: We
execute every subject program with every forest
generated with the appropriate grammar andmea-
sure the code coverage induced. By construction,
we also know the 𝑘-path coverage of each forest
we generated. For the purposes of our evaluation,
we consider values of 𝑘 from one to five. With this
information about coverage collected for every for-
est, we can attempt to calculate a correlation and
assess its strength.

As we have no reason to assume that any such correlation need necessarily be
strictly linear, we must not use Pearson’s correlation coefficient. We do, however,
suspect that there might be a monotonic correlation instead, i.e., the higher the
𝑘-path coverage of a forest, the higher its resulting code coverage. Therefore, we
compute Spearman’s rank correlation coefficient [116].

Its value 𝜌 ∈ [−1, 1] signifies how well a monotonic function describes the
relationship between two variables. When 𝜌 is close to 1, there is a perfectly
monotone increasing relationship, whereas a value close to −1 signifies a per-
fectly monotone decreasing relationship. Values between those extrema indicate
a correlation of ever diminishing strength, with a value of zero meaning no
correlation at all.

4.1.3 Interpreting Results
Table 4.2 shows the results of the experiment for our subjects. Specifically, it
shows the values of 𝜌 indicating the correlations between branch coverage and
𝑘-path coverage for values of 𝑘 ranging from one to five. We can see that all
reported values are positive, indicating that the two coverage measures have an
increasing monotonic relationship, which confirms our suspicions from earlier.
Further, an overwhelming majority of all observed values of 𝜌 are much closer
to 1 than to 0, which means that the correlations tend to be strong to very strong.

Notably, this correlation holds approximately equally well across all values of 𝑘
and all subjects. The strength of the correlation provides evidence that the
connection between grammar coverage as represented by 𝑘-path coverage and
code coverage as represented by branch coverage is not merely coincidental.
Further, we can say that increasing grammar coverage is highly unlikely to result
in a reduction in code coverage, whichmakes high grammar coverage a generally
desirable property.

1The subjects were only able to consume 68 831 out of the 113 266 inputs generated by the
forestation algorithm after a week of runtime.
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Table 4.2 / Spearman’s rank correlation coefficient 𝜌 between 𝑘-path
coverage and branch coverage. The results are statistically significant
as 𝑝 < 0.001 holds for all entries.

Subject
Spearman’s 𝜌

1-path 2-path 3-path 4-path 5-path

argo 0.978 0.979 0.977 0.978 0.978
fastjson 0.890 0.892 0.892 0.894 0.894
genson 0.719 0.718 0.716 0.716 0.716
gson 0.785 0.786 0.784 0.784 0.784
jackson-databind 0.671 0.668 0.667 0.667 0.667
json-flattener 0.834 0.832 0.832 0.833 0.833
json-java 0.855 0.855 0.854 0.856 0.857
json-simple 0.936 0.931 0.926 0.926 0.926
json-cliftonlabs 0.923 0.918 0.913 0.914 0.914
minimal-json 0.869 0.864 0.860 0.861 0.861
pojo 0.921 0.918 0.915 0.916 0.917
commons-csv 0.860 0.848 0.885 0.884 0.890
jackson-csv 0.844 0.856 0.818 0.817 0.802
jcsv 0.873 0.822 0.858 0.858 0.880
sfm-csv 0.516 0.481 0.462 0.462 0.464
simplecsv 0.862 0.811 0.821 0.820 0.828
super-csv 0.918 0.863 0.881 0.882 0.888
autolink 0.692 0.791 0.796 0.796 0.797
galimatias 0.681 0.757 0.774 0.770 0.769
jurl 0.579 0.573 0.578 0.578 0.578
url-detector 0.680 0.771 0.775 0.776 0.776
commonmark 0.878 0.886 0.887 0.887 0.887
markdown4j 0.875 0.885 0.886 0.886 0.886
txtmark 0.880 0.891 0.893 0.893 0.893
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Figure 4.1 / Branch and 𝑘-path coverage measured for the argo JSON parser subject.

To inspect the nature of this connection somewhat closer, let us consider a
scatter plot of the coverage values in question for the argo JSON parser as a
representative2 subject given in Figure 4.1. It displays characteristics that are
very similar in the rest of our subjects as well.

Interestingly, we can observe that for almost any given level of branch coverage
reached, the higher the value of 𝑘, the smaller is the 𝑘-path coverage that is
seemingly sufficient to reach it. For example, forests that achieve a branch
coverage of 0.35 also tend to have a 1-path coverage of around 0.6, a smaller
4-path coverage of around 0.4, and a much smaller 5-path coverage of only
approximately 0.22.

This seems like a highly useful property in the context of test generation. For
example, a test generator may consider taking advantage of this property by
increasing the value of 𝑘 and at the same time reducing the 𝑘-path coverage re-
quirement when generating files, thus reducing the number of inputs generated
but ostensibly achieving a high level code coverage nonetheless.

One explanation for this observation might lie in the not quite subsumption-like
relationship that 𝑘-path coverage exhibits for different values of 𝑘. While we have
seen in Section 2.5.3 that we cannot establish a strict subsumption relationship
in the general case, we can still unquestionably say that longer 𝑘-paths include
shorter ones.

Another explanation for this pattern of higher 𝑘-path coverage achieving certain
code coverage “earlier” may have to do with specific 𝑘-paths corresponding to

2Figure A.1 gives the plots for all other subjects as well.
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“unlocking” additional parts in the code. If some part of the code is guarded by
a condition that reflects the presence of a specific structure in the input, then
only those inputs will be able to execute the code, that do have this structure
present. Alternatively, if this particular structure is absent, some other parts of
the code may be executed instead, making this kind of inputs equally as valuable
for testing.

As an example, consider a parser that turns JSON inputs into typed collection
objects in memory. A JSON object with integer-valued properties would end up
as a dictionary of type Map<String, Integer>, while a JSON array of strings
would find its correspondence in a list of type List<String>. The allocation
of these collections takes place in different parts of the code that are executed
independently of each other, but dependently on the presence of objects and
arrays in the JSON input. Therefore, an input combining both structures in a
nested context, which can be characterized by a longer 𝑘-path, will achieve more
coverage than an input that contains at most one of them, and thus also a shorter
𝑘-path. In fact, we will investigate the connection 𝑘-paths have to locations in
code in more detail in the upcoming Chapter 5.

4.2 Summarizing the Correlation
In this chapter, we have seen empirical evidence for a positive correlation be-
tween input coverage, as represented by 𝑘-path coverage, and code coverage,
represented by branch coverage. Such a correlation indicates that increasing
the grammar coverage may also lead to an increase in code coverage in practice.
Given that 𝑘-paths tend to express distinct parts of the language, the existence
of such a connection to constructs in the code is not surprising.

As an unintended, yet welcome side effect, we have received an additional
grammar-based generation algorithm, capable of producing sets of inputs over
a wide range of 𝑘-path coverage values. Investigating its suitability as a fuzzer
of its own is left for future work, however it is hard to imagine it being very
effective, given its inherently large run time by construction.



Chapter 5

Associating Input Features
with Code Locations

So far, in Chapter 2 we have established the construct of 𝑘-paths as an effective
means for describing certain context-based features of inputs. In Chapter 3 we
leveraged this notion to exhaustively cover such features by producing sets of
inputs whose derivation trees contain all possible 𝑘-paths. Doing so has shown
to yield adequate overall code coverage and defect detection in the tested subject
programs. However, we also observed that the number of inputs required gets
rather large for realistic grammars and high values of the context depth 𝑘. In
Chapter 4 we have seen indications of what appears to be a monotonic rela-
tionship between 𝑘-path coverage and code coverage, and also that under some
circumstances reaching a threshold in code coverage does not require full 𝑘-path
coverage of the input set.

With this in mind, now has come the time to shift our attention to an aspect
of fuzzing which, so far, we have left without consideration: performance. In
realistic scenarios, it is not uncommon for the execution of the system under test
(SUT) to be the main bottleneck when performing system-level (fuzz) testing.
We are particularly interested in fuzzing at the system level because it completely
absolves us from the costly, mostly manual, task of filtering out false positives
from the findings since any and all system-level crashes are real results stemming
from a user-facing interface.

In the system-level use case, one must always execute the entire program from
reading in the input to finally producing a result or crashing – an act, which is
likely to be expensive and time-consuming for any reasonably extensive and
fuzz-worthy application. To accelerate execution, there are techniques that allow
taking a snapshot of a program state and forking off copies to process different
inputs [134, 63]. However, the best such approaches can do is to spare us only
the initialization efforts since we still need to execute the entire business logic
that we want to test. At the same time, while executing at the system level,
realistically, we are mostly interested in focusing the testing efforts on some
particular aspects of a subject’s behavior.

49
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Expr := AddExpr0;
AddExpr := MultExpr2

| AddExpr5 ("+"10 | "-"11) MultExpr7;
MultExpr := UnaryExpr8

| MultExpr13 ("*"23 | "/"24 | "%"25) UnaryExpr15;
UnaryExpr := Identifier16

| "+"27 UnaryExpr28
| "-"29 UnaryExpr30
| "++"31 UnaryExpr32
| "--"33 UnaryExpr34
| "("35 AddExpr36 ")"37
| DecDigits22;

DecDigits := DecDigit42
+;

DecDigit := "0"44 | "1"45 | "2"46 | "3"47 | "4"48
| "5"49 | "6"50 | "7"51 | "8"52 | "9"53;

Identifier := "x"39 | "y"40 | "z"41;

Figure 5.1 /Grammar for a subset of arithmetic expressions in the JavaScript
programming language (excerpt). Duplicated from Figure 1.1 and en-
richedwith numeric node identifiers. If not yet done, it is recommended
to navigate to Appendix B, which contains a copy of this figure, and to
print it out on an extra sheet to have it at hand for easy reference.

Sticking with the running example that has accompanied us this far, let us
consider the following fuzzing scenario, where we try to illustrate what exactly
we expect from a good fuzzer and howwe can optimize its performance. First, let
us revisit a setting briefly mentioned in the introduction. Our subject is going to
be a compiler which takes JavaScript code as input, and produces a smaller and
faster version of it as output. The optimizations implemented in its compilation
passes are manifold and range from renaming identifiers to simplifying entire
code regions.

Specifically, and for the sake of our example, we are interested in its capability
to optimize arithmetic expressions, and, even more precisely, in its application
of the distributive rule, which allows it to split expressions of the form 𝑎 × (𝑏 + 𝑐)
into 𝑎 × 𝑏 + 𝑎 × 𝑐, so that the subterms can be optimized individually by further
compiler passes. For example, this transformation might enable the compiler
to replace expensive computations with some cheaper alternatives, such as
substituting multiplication or division by powers of two with bit shift operations,
or using precomputed multiplication tables for small values. For convenience,
let us further assume that this functionality is implemented in a method called
distributive_rule().

For our example test scenario we are going to consider the realistic use case in
which our target method is not considered to be sufficiently well tested. This can
occur in many cases along the lifecycle of a program: from the inception of the
method with no prior tests in existence, over optimizations and refactorings that
may inadvertently change its functionality, to intentional changes in behavior
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Table 5.1 / Sample inputs and whether they cover the
distributive_rule() method.

Input1 Coverage Input1 Coverage

1 SQUARE 1 + 2 SQUARE
(1 + 2) SQUARE 1 ∗ 2 SQUARE
1 + 2 ∗ 3 SQUARE (1 + 2) ∗ 3 Check-square
1 ∗ (2 + 3) Check-square (1 + 2) ∗ (3 + 4) Check-square

such as extending or narrowing the scope of the method. In such cases, we
would like for a fuzzer to be able to efficiently generate novel inputs that exercise
our method of interest. In order to achieve variety among these inputs, we
would like to leverage what we have learned about the make-up of inputs to
establish associations between the features of inputs and the code they relate to.

Incidentally, the working principle behind this task can be seen as very similar
to metamorphic testing [21]. In metamorphic testing, the goal is to leverage
domain knowledge about the SUT to perform testing: If we change the inputs
in a known manner, the behavior or result should change accordingly. In our
use case, we wish to generate inputs that are supposed to execute the targeted
method due to their make-up, and to ensure that it is indeed executed.

However, first we have to manifest these associations into entities that a fuzzer
can interpret and use, and whose quality we can experimentally assess.

As an aside, throughout this chapter, we often refer to the JavaScript expression
grammar first introduced in Figure 1.1. Because the numeric identifiers of its
nodes are relevant, Figure 5.1 shows the grammar again, but this time with
identifiers displayed for easy lookup.

5.1 Associating Coverage
Let us now begin with our first subtask, in which we would like to establish
associations between features of inputs and a code location of interest such as a
method. In the following, we shall refer to a method as covered or reached as soon
as the system under test (SUT) enters it, i.e., we do not require its full execution.
As a concrete example, consider several inputs and their coverage of our target
method distributive_rule() as given in Table 5.1.

We as humans can, of course, easily recognize a pattern here. But how can
we make a program infer such patterns automatically? Recalling from our
observations in Chapter 4 that there seems to be a dependency between 𝑘-paths
and code coverage, we choose to explore this connection further. Again, as we
did several times previously already, we can leverage a grammar to parse the
inputs and decompose them into their constituent features, which we can then
use for predicting code coverage. Specifically, we can train predictors that enable
us to make such associations.

1The inputs use “*” instead of “×” to indicate multiplication in accordance with the appropriate
JavaScript expression grammar excerpt given in Figure 5.1.
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∃ MultExpr13 "*"23 UnaryExpr15

SQUARE ∃ "("35 AddExpr36 ")"37

SQUARE Check-square

no yes

no yes

Figure 5.2 / Initial model for the coverage of
distributive_rule(), trained on the inputs
given in Table 5.1.

In terms of predictors, we need not look far, as the broad area ofmachine learning
offers countless options, allowing to build predictive models from any data
collection imaginable. Unfortunately, most of those models are uninterpretable
in that any insights into their inner workings are hardly possible at all [74].
Nevertheless, we would like to profit from the approaches in this area. Since
it is important for us to have our predictions be interpretable and actionable,
keeping in mind our use case of generating novel inputs, we opt to fall back to
some of the earliest advances in machine learning: decision trees [120].

A decision tree is a multi-level classifier, whose every node carries a constraint
that splits the set of observations into those that fulfill it and those that do not.
Following a path in the tree, every node adds an additional constraint, until
all observations in the fulfilling set show the same behavior, or more formally,
belong to the same class.

The properties on which the constraints of a decision tree discriminate are
also called features. The simplest of such features can be binary in nature, e.g.,
representing the presence or absence of certain elements in the inputs. For our
purposes, we can set the presence and absence of 𝑘-paths as the features of
interest. Further, we want to classify our inputs in terms of whether or not they
cover our targeted method, therefore we consider the two classes covered and
not-covered also referred to as Check-square and SQUARE, respectively.

In order to obtain a decision tree, one requires a series of observations of the
features and class of inputs, comprising so-called training data. The process
that creates the decision tree from training data is called a decision tree learner
because it learns the decisions that make up the tree from given data. An
implementation of one such learner that we are going to use is freely available
as part of the scikit-learn library [101].

So, how does a decision tree help us with our distributive_rule() case?
Starting small, given the example inputs from Table 5.1, or more precisely, the
presence or absence of productions from Figure 5.1 in each input, a decision tree
learner will produce a tree like the one in Figure 5.2: If the input contains a mul-
tiplication (a production MultExpr13 "*"23 UnaryExpr15) and an expression in
parentheses (a production "("35 AddExpr36 ")"37), then distributive_rule()
will be covered, otherwise not.
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∃ UnaryExpr15 → AddExpr36

SQUARE ∃ UnaryExpr15 → AddExpr36 → MultExpr2

Check-square ⋯

no yes

no yes

Figure 5.3 / Excerpt from an improved decision tree model for
the coverage of distributive_rule(), obtained from 1000
generated inputs.

The decision tree in Figure 5.2 is consistent with all observations from Table 5.1.
However, for the input “(𝑥 ∗ 2)”, it falsely predicts that distributive_rule()
should be covered. This is because of two reasons:

a) the features in this tree do not carry any ordering information, so an
input containing a MultExpr13 "*"23 UnaryExpr15 on the inside of a "("35
AddExpr36 ")"37 is classified the same as one that has the proper expected
MultExpr13 "*"23 "("35 AddExpr36 ")"37 expression order, and

b) the tree learner has not seen sufficient evidence to manifest the above
distinction.

To address a), we opt to leverage the 𝑘-paths, which express specific derivation
contexts. Chapter 4 has given us enough confidence that doing so will, in fact,
enrich the trees with more precise constraints. As for b), the decision tree must
be trained from more inputs. If we are in the fortunate situation, where we have
a large body of regression test inputs available to us, we can directly profit from
it to get more observations for our training data. Should this not be the case,
however, remember that we still have the grammar and its proven generative
capabilities at our disposal, e.g., as seen in Chapter 3. Note that while acquiring
sufficiently much training data does require us to execute the SUT with many
inputs, we can record the coverage of every observable method at once in a
single pass.

Such an extended training results in a more refined tree, shown partially in
Figure 5.3. This tree precisely expresses that a parenthesized expression (i.e.,
AddExpr36) must occur as an expansion (→) of the right-hand side of a multi-
plication (i.e., UnaryExpr15). Further, the expression in question must not be
a simple MultExpr2, which guarantees by construction that it must involve an
addition or a subtraction.

A decision tree such as the one in Figure 5.3 is of immediate use to us in our
prediction scenario. Given any arbitrary input, we can parse it into its derivation
tree and feed the 𝑘-paths found therein into the predictor trained for our method
of interest, which is then able to give us a classification as to whether the method
will be executed. The predictor does this by evaluating the criteria in its nodes
and following the path until it arrives at a Check-square or a SQUARE verdict. Since this does not
involve executing the SUT, this process is very efficient.
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As an example, consider the two inputs given in Figure 5.4. We want to use
our trained decision tree to find out whether the input “(𝑥 ∗ 2)” triggers the
targeted method distributive_rule()without executing the SUT. Figure 5.4a
shows its simplified derivation tree. Consulting our trained predictor from
Figure 5.3, we must now answer the first question: Does the derivation tree of
the input contain the 2-path UnaryExpr15 → AddExpr36? We see that it does not,
and immediately conclude from the SQUARE verdict that it does not cover the method.

What about “𝑥 ∗ (𝑥 + 2)” given in Figure 5.4b? Here, we see that it does indeed
fulfill the ∃ UnaryExpr15 → AddExpr36 criterion. Therefore, we move further
down the decision tree by following the “yes” edge. The next criterion to test
is ∃ UnaryExpr15 → AddExpr36 → MultExpr2 and this time, it does not hold
for our derivation tree. Therefore, we follow the “no” edge and end up with
a Check-square verdict, from which follows that the input “𝑥 ∗ (𝑥 + 2)” does cover the
distributive_rule() method.
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AddExpr0

MultExpr2

UnaryExpr8

"("35 AddExpr36

MultExpr2

MultExpr13

UnaryExpr8

Identifier16

"x"39

"*"23 UnaryExpr15

DecDigits22

DecDigit42

"2"46

")"37

a / Derivation tree for input “(𝑥 ∗ 2)”. It is missing
a relevant 𝑘-path, so its coverage class is SQUARE.

AddExpr0

MultExpr2

MultExpr13

UnaryExpr8

Identifier16

"x"39

"*"23 UnaryExpr15

"("35 AddExpr36

AddExpr5

MultExpr13

UnaryExpr8

Identifier16

"x"39

"+"10 MultExpr7

UnaryExpr8

DecDigits22

DecDigit42

"2"46

")"37

b /Derivation tree for input “𝑥∗(𝑥+2)”. It contains a critical 𝑘-path,
and is therefore labelled as Check-square by the decision tree in Figure 5.3.

Figure 5.4 / Two derivation trees demonstrating how a decision tree predicts method coverage.
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Table 5.2 / Subjects and association quality of Codeine.

Subject
Number of Methods Association Quality

Observed Trainable Accuracy Precision Recall

argo [8] 408 132 0.983 0.959 0.971
fastjson [2] 1404 101 0.984 0.966 0.976
genson [19] 986 113 0.986 0.964 0.969
gson [44] 632 148 0.987 0.964 0.962
json-flattener [61] 60 41 0.970 0.978 0.936
json-java [72] 202 44 0.982 0.944 0.937
json-simple [62] 54 17 0.997 0.988 0.994
json-cliftonlabs [76] 78 17 0.987 0.989 0.988
minimal-json [117] 199 100 0.974 0.946 0.928
pojo [75] 451 150 0.988 0.953 0.934
autolink [118] 43 20 0.946 0.948 0.952
jurl [111] 50 38 0.941 0.956 0.977
url-detector [106] 92 39 0.952 0.966 0.970
rhino [92] 4531 599 0.954 0.846 0.825
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5.1.1 Evaluating Coverage Associations
Of course, we cannot expect associations that are based on such an abstract
concept as the presence and absence of 𝑘-paths to be perfect. However, we
can perform an empirical evaluation to gain an estimate of their correctness in
practice. In fact, it is important to ensure that we base our targeted generation
efforts on an accurate representation of a method’s call conditions to begin with.

The approach in question has been implemented in a tool called Codeine, that
is technically an extension of tribble as introduced previously in Section 3.1.5,
which now also uses parts of the Alhazen tool [65] for interacting with decision
trees.

And so we carry out our experiments on a set of subjects, most of which should
be familiar to us already from previous chapters. In this experiment, we exclude
the CSV formats due to the small size of the grammar and subject code, and
Markdown due to the fact that this language has quite literally no invalid words,
which makes it infinitely ambiguous. Ambiguous grammars present a big
performance challenge for Alhazen because they admit multiple derivation
trees for the same input, and so Alhazen tries to consider all of them at once. To
make up for the loss, however, we introduce the Mozilla rhino subject, which is
a JavaScript interpreter implemented in the Java language. Table 5.2 provides a
full list of the subjects used in this experiment. The input formats are the same
that we have used in Table 3.1, only the JavaScript grammar is a new addition in
the heavyweight category with a total of 228 productions [32].

The experiment orchestration is implemented in Python by means of a pipeline
process built on top of Spotify’s Luigi framework [11]. The pipeline structure
allows for an automated experiment that is easily run in parallel and is able to
recover from errors.

TheObserved column in Table 5.2 gives the number of methods Codeine observed
while executing each subject on the training input set. This number excludes
constructors and static class initializers because we do not deem them to be
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targets of particular interest. The Trainable column indicates for how many of
those methods there was sufficient data to learn a decision tree (limited to 1000
at most for performance reasons). This involves filtering out methods which
were either always or never executed in the training data obtained from the
initial input set. As before, we use trusty JaCoCo [55] to instrument the subjects
and recover coverage data.

Our experimental pipeline is set up in a way that allows us to investigate both
the predictors in isolation and the targeted generation scenario in a single pass.
First, the subjects are compiled and instrumented to report which methods are
covered during execution and how often. Then, for each input language, we
create a set of 1000 initial input files generated at random from the grammar
using the Grammarinator approach [54] like we did in Section 3.2. We also
adopt Grammarinator’s default limit of 30 derivation steps as it seems to gener-
ate sufficiently diverse inputs across all our languages. And just to avoid any
potential confusion, throughout this evaluation, the term “random” refers to
grammar-random inputs generated this way.

Given this initial training set, we gather features for every input: We use the
presence or absence of 𝑘-paths of up to a length of 4, which is the value used
in a practical evaluation of the 𝑘-path approach by van Heerden, Raselimo,
Sagonas, and Fischer [125]. Additionally, we discard features that have the same
value (i.e., either present or absent) across all inputs and are thus useless to the
decision tree learner.

Parallel to the feature extraction, the initial input set is fed into all subjects and
method coverage data is recorded. From this data we also filter out methods that
are never executed because there is no way to train a decision tree for something
we have not observed. Likewise, we ignore methods that are always triggered
because we do not even need a tree to explain their calling conditions. Table 5.2
gives the method numbers resulting from this filtering in its Trainable column.

In addition to removing methods with no variance, we also balance the dataset
by sub-sampling the data, so that for every remaining method, the number of
samples which reach the method is the same as the number of samples which
do not reach the method, as recommended in [109]. We thus avoid the problem
of learning trees that are heavily biased to either of the classes, as we want them
to characterize the call conditions of a method as precisely as possible.

From here, we can train a decision tree for every trainable method using the
features of the inputs. We set the maximum depth for the tree learner to be 5 as
this value was successfully used in [65] to obtain good results. Also, we want
to keep our trees lean to reduce the number of constraints Codeine will have to
solve when generating inputs. Having trained the decision trees, we arrive at a
central point where our “pipeline” actually branches out to address different
concerns.

The first of these concerns is the evaluation of the associations between input
features and code locations we have just learned in the form of our predictors.
In order to evaluate these predictors, we can leverage classic evaluation methods
from machine learning. Specifically, we can evaluate the precision, recall, and
accuracy of the decision trees learned by Codeine.
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For this, our evaluation pipeline creates another, independent set of random
inputs, which we shall call our test set. We then run all subjects with these
inputs and measure the real code coverage, establishing the so-called ground
truth. Next, the decision trees in question are asked to classify the inputs in the
test set according to their features, which gives us a prediction for each method
and each input.

We can now compute the accuracy of the decision trees. We refer to our predic-
tions as true or false depending on whether they are correct or not with respect to
the ground truth, and as positive or negative depending on whether they predict
that a method will be called (Check-square) or will not be executed (SQUARE), respectively. Based
on those definitions, we can derive the following measures:

Accuracy defined as true positives + true negatives
number of observations is the fraction of correct predic-

tions (covered or not-covered) over the number of samples.
Precision defined as true positives

true positives + false positives denotes how many of the in-
puts reported to cover a method actually do so.

Recall defined as true positives
true positives + false negatives denotes how many of the inputs

covering a method are also classified as such.

All the above measures have values between zero and one, with one indicating
the best results. Table 5.2 lists these values for all subjects in the columnsAccuracy,
Precision, and Recall, respectively.

From the results presented in Table 5.2, we can conclude that the decision trees
as learned by Codeine do indeed predict the code coverage very well.

First, the predictions made by the trees are accurate at more than 94 % across
all subjects. As observed earlier, the features are indeed relevant to a method
being covered or not. This makes the trees valuable not only in conjunction with
inputs which they can classify, but also on their own. A decision tree is very
different from many other machine learning models in that its very structure
gives information about the priorities with which individual features should
be treated. In Section 5.1.2 we show how to translate our features into human-
readable patterns, which can help in understanding the learned decision trees,
making them useful even in the absence of inputs.

Second, while the accuracy is a measure of how often the tree is correct in
its prediction, the precision concerns itself with how often a tree is correct in
predicting the interesting case that a method is covered (Check-square). Upon inspecting
our precision results, we can come to the conclusion that the trees are not
only accurate because they simply predict non-coverage most of the time and
just happen to be correct. Instead, the high precision indicates that the trees
effectively characterize inputs that end up covering methods. The high recall
further supports this interpretation: The trees identify almost all there is to
identify in terms of method covering inputs.

Together, these measures indicate that the trained predictors do indeed present
a good basis upon which we can attempt to implement our targeted generation
use case.
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5.1.2 Grammar Patterns
While having 𝑘-paths as features is perfectly fine for a classifier such as a decision
tree, they do not give an intuitive understanding of the kind of input patterns
they describe. Even in the presence of a grammar, it is difficult to mentally
translate a 𝑘-path into something meaningful. However, the process required
to do so is actually quite straightforward because it merely requires deriving a
partial input by following the 𝑘-path.

For example, consider the 𝑘-path UnaryExpr15 → AddExpr36 → "-"11. Reading
from right to left and step by step, it describes a binary “-” operator in the context
of an AddExpr. The "-"11 can be obtained by choosing the second alternative
of the AddExpr derivation rule, and the AddExpr36 reference corresponds to the
second to last alternative in the UnaryExpr rule. Working our way further up
the 𝑘-path, we now need to locate the UnaryExpr15 reference, which resides in
the second alternative of the MultExpr rule.

With this, we can now evaluate the entire 𝑘-path into a single, synthesized
derivation rule, which is not part of the original grammar. First, we replace the
UnaryExpr15 by its location, namely the second alternative of the MultExpr rule:

MultExpr13 ("*"23 | "/"24 | "%"25) UnaryExpr15.

Next, we replace herein the UnaryExpr15 reference by the location of AddExpr36,
which is the next element in our 𝑘-path. After this step, we end up with a
synthesized derivation rule of the form

MultExpr13 ("*"23 | "/"24 | "%"25) "("35 AddExpr36 ")"37.

Replacing AddExpr36 by its definition, we obtain the next step:

MultExpr13 ("*"23 | "/"24 | "%"25) "("35 AddExpr5 ("+"10 | "-"11) MultExpr7 ")"37.

Repeating this procedure onemore time for the final 𝑘-path element "-"11 results
in the following derivation rule:

MultExpr13 ("*"23 | "/"24 | "%"25) "("35 AddExpr5 "-"11 MultExpr7 ")"37.

If we remove the identifiers and quotes, we end up with an easy to understand
pattern of the form

“MultExpr (/ | * | %) (AddExpr - MultExpr)”.

In fact, this functionality is implemented as part of tribble, which can turn
any valid 𝑘-path into such a pattern, provided the original grammar. Apart
from helping with interpreting the criteria from our trained decision trees, such
patterns also allow conveniently checking for changes in calling conditions of
methods after large refactorings. For example, if a method designed to pro-
cess inputs such as “++Identifier” is now also suddenly connected to patterns
like “++DecDigits” after our refactoring, we might have forgotten to include a
semantic checker on the path to this method.

As an additional side effect, this transformation of 𝑘-paths into patterns allows
applying approaches such as “evocative patterns” introduced by Gopinath,
Nemati, and Zeller [42]. Since our decision trees usually give us not only a
single pattern but rather a conjunction of such patterns, we can immediately
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apply the definition conjunction operation from [42] to obtain a single pattern
describing the entire conjunction.

For example, if in addition to the above 3-path UnaryExpr15 → AddExpr36 →
"-"11 we want to consider the 1-path "*"23, their conjunction would result in
the following pattern:

“MultExpr * (AddExpr - MultExpr)”

At this point, the astute reader might have noticed that the optimizing compiler
used in our example seems to have a bug. Specifically, it would seem that it not
only applies the distributive rule appropriately to multiplications of the form
𝑎 × (𝑏 ± 𝑐) but also erroneously to such patterns as 𝑎/(𝑏 ± 𝑐) and 𝑎 % (𝑏 ± 𝑐).

Note how this exemplifies the high level of impact the textual form of the gram-
mar tends to have on grammar-based approaches. In our case, the way MultExpr
is defined does not allow us to differentiate between multiplications and divi-
sions by means of a single 𝑘-path. Had the same rule been formulated as follows,
the single 3-path would have sufficed to produce the same pattern.

MultExpr := UnaryExpr8
| MultExpr13 "*"23 UnaryExpr15
| MultExprq "/"24 UnaryExprx
| MultExpru "%"25 UnaryExpry;

Moreover, our decision tree would have been able to explicitly detect that the
pattern

“MultExpr / (AddExpr - MultExpr)”

leads to the execution of distributive_rule(), which should have immedi-
ately raised an alarm in us as testers. As such, we are left aware of the impor-
tance of the grammar structure, and recognize that investigating its impact more
closely presents an exciting future work item.

5.2 Targeted Input Generation
It is now finally time to address our actual goal of generating novel inputs that
are supposed to reach our target method. Because the constrains in the decision
trees that we obtained previously characterize the call conditions of amethod, we
would like to leverage them to generate inputs exhibiting these characteristics.

A naïve but straightforward approach would be to simply generate inputs at
random and immediately feed them into the predictors to discard those that do
not match our expectations of covering the target method. However, such an
approach is hardly feasible in practice because the performance is necessarily
going to be abysmal for any non-trivial criterion prescribed by the predictor.

Therefore, the Codeine implementation supports what we can refer to as feature-
oriented input generation, where it extracts constraints from a decision tree and
generates samples that fulfill those constraints. Technically, this is implemented
as an extension of the algorithm presented as part of the Alhazen tool [65].
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Figure 5.5 / An abstract decision tree
containing three node constraints over
the features 𝐴, 𝐵, and 𝐶, as well as two
“covering” paths leading to a Check-square verdict.
Thus, we can say that this decision tree
produces two inputs.

5.2.1 Obtaining Constraints from a Decision Tree
To be precise, the constraints we seek to fulfill are conjunctions of the constraints
in the nodes along a path leading to a covered classification in a decision tree.
To collect a constraint, we follow the path from the root of the tree to a leaf
that belongs to the Check-square class and create a single large constraint by constructing
a conjunction. For every node we visit along the path, we add its constraint to
the conjunction if the path follows the “yes” branch, otherwise we negate the
constraint before adding it. In practice, most decision trees have multiple Check-square
leaves, so in these cases we repeat the conjunction construction for all covering
paths to obtain a set of tree constraints. This way we can say that a tree usually
describes a set of inputs.

To give a visualization, consider Figure 5.5 which shows an abstract decision
tree that contains three node constraints ∃𝐴, ∃𝐵, and ∃𝐶. There are two paths
from the root to a Check-square leaf, which turn into the two follwing conjunctions:

1. ∄𝐴
2. ∃𝐴 ∧ ∄𝐵 ∧ ∃𝐶

Note how we negate ∃ to be a ∄ whenever we are following the “no” branch.

As a more concrete example, consider the tree in Figure 5.3, which proposes
that the constraint

∃ UnaryExpr15 → AddExpr36 ∧ ∄ UnaryExpr15 → AddExpr36 → MultExpr2

describes an input which covers distributive_rule().

In order to limit the selection of constraints to only those in which we have a
high degree of confidence, we do not consider paths leading to leaves that have
a Gini impurity [18] greater than 0.3. Gini impurity is a value in [0, 1], and it
indicates the probability to misclassify a sample if it were classified randomly
according to the sample distribution of the given leaf. This measure is calculated
as part of the decision tree model and is readily available for us after the decision
tree learner is finished training the tree.

The next processing stage we have to perform before we can engage in the actual
generation of inputs is filtering out infeasible constraints. By design, our decision
tree learner optimizes to correctly classify as many observed inputs as possible. If
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some constraint is infeasible, there will be no input satisfying it for the learner to
observe. Therefore, when building the decision tree, the learner is not deterred
from including such constraints because doing so does not lead to any observable
misclassification. Therefore, the learner may end up placing this constraint for
either class (i.e., Check-square or SQUARE). We remove such constraints by means of a dedicated
check for incompatible 𝑘-paths. For example, a constraint of the form ∃ a → b

→ c ∧ ∄ a → b is infeasible because the 2-path is contained in the 3-path, and
therefore the 3-path cannot be instantiated without generating the 2-path. Note
that similarly to our work in [65], we do not care about the completeness of this
feasibility check. If we overlook an infeasible constraint, the algorithm will stop
without a result later on. A rigorous feasibility check does, however, speed up
the approach significantly as the algorithm would otherwise exhaust its timeout.

5.2.2 Generating from Constraints
Having obtained a set of supposedly feasible constraints from a decision tree,
we can move on to generate a derivation tree fulfilling each constraint in turn.
The generation algorithm itself comprises two intertwined searches: The outer
search is a heuristic search in the space of all possible partial derivation trees,
while the inner search completes a partial tree and provides a heuristic value for
the outer search.2

Because the productions of the grammar restrict the form of syntactically valid
trees, most notably, the number and derivation rules of nodes and their children,
a derivation tree can also be represented by its nodes listed in pre-order. The
outer search maintains a list of prefixes of such pre-order node sequences, where
each prefix corresponds to a partial derivation tree. In each step, the outer search
chooses a prefix and expands it, thereby enlarging the corresponding partial
tree, until a sequence is discovered that represents a complete derivation tree.

The inner search uses a greedy approach to complete a partial tree. This method
also assigns a value which expresses how well the complete tree matches the
constraints. This value is used as a heuristic within the outer search: If the
given completion of a partial tree fulfils many constraints, there is a good chance
that its further completion fulfills all constraints. Therefore, this partial tree is
selected for expansion.

Let us now take a closer look at how this search tandem works in detail. Staying
with our current example, we assume the algorithm is solving the constraint
∃ UnaryExpr15 → AddExpr36 ∧ ∄ UnaryExpr15 → AddExpr36 → MultExpr2 that
we have obtained from the decision tree excerpt given in Figure 5.3.

The outer search begins with an empty tree. Starting with the root AddExpr0,
the generator needs to make a decision which of its two alternatives to expand:
MultExpr2 or AddExpr5 ("+"10 | "-"11) MultExpr7. It generates partial trees for
both options and calls upon the inner search to complete them. Figure 5.6 shows
the state up to now in its upper part, above the dashed line.

Let us observe how the inner search completes the first partial tree, the one
which expands AddExpr0 to MultExpr2. Its first decision is whether to ex-
pand MultExpr2 into a UnaryExpr8 or a MultExpr13 ("*"23 | "/"24 | "%"25)

2This schemewas designed and implemented byAlexander Kampmann as part of Alhazen [65].
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UnaryExpr15. The first clause in the constraint requires a 𝑘-path that begins with
UnaryExpr15. The second option generates a UnaryExpr15 directly, and therefore
the greedy search uses it. At this point, the greedy search deviates from the
order given by the grammar3 and immediately derives the UnaryExpr15, instead
of proceeding left-to-right to a MultExpr13. All nodes can be easily added to the
tree in the correct order regardless, thanks to the slot system as introduced in
Definition 2. In turn, UnaryExpr expands into one of the following alternatives:

1. Identifier16
2. "+"27 UnaryExpr28
3. "-"29 UnaryExpr30
4. "++"31 UnaryExpr32

5. "--"33 UnaryExpr34
6. "("35 AddExpr36 ")"37
7. DecDigits22

Given that we are generating a subtree for a UnaryExpr, and the first clause of
the constraint requires an AddExpr36, the algorithm takes option 6 at this point.

Now, AddExpr needs to be derived, and the algorithm faces again the decision
between MultExpr2 and AddExpr5 ("+"10 | "-"11) MultExpr7. The first clause
in our disjunction provides no further guidance as the requested 2-kpath is
already in the tree, regardless of which decision is taken here. The second clause,
however, prohibits a 𝑘-path. We are in a subtree below AddExpr36, and there is a
UnaryExpr15 immediately above it, therefore the first two elements of the 3-path
are present. The second clause of the constraint would be violated if we chose
MultExpr2 at this point. Therefore, the algorithm chooses the other alternative.
Note how the prohibited 𝑘-path can only be considered at its last element: Simply
prohibiting MultExpr2 would also render the first clause infeasible.

The partial derivation tree below the dashed line in Figure 5.6 shows the result of
the inner search so far. The tree is still not complete as there are several unfilled
slots, which we have skipped along the way. However, we can simply invoke a
close-off procedure as we did in Section 3.1.2 to obtain a complete tree with all
elements required by our constraint.

The inner search discovered a solution for the constraint, and the outer search can
terminate after just one iteration. Had this tree not turned out to be a solution,
the outer search would have proceeded with the other candidate it generated
earlier. In practice, we observed that 𝑘-path constraints, in contrast to some of
the more involved constraints implemented in Alhazen, lead to termination
after one round of the outer search in many cases.

With this targeted generation algorithm in place, we nowhave aworking solution
to address our use case. Given our target method, we deploy the described
procedure to generate inputs that are likely to trigger its execution. What remains
to be seen is how well this works in practice.

5.2.3 Evaluating Targeted Generation
In our experimental evaluation, we aim to investigate several characteristics of
the presented targeted generation approach at once:

3If the greedy search proceeded in the order given by the grammar, cases like the one in the
example would trigger an endless loop by always going for the nearest derivation of MultExpr.
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AddExpr0

MultExpr2

MultExpr13 UnaryExpr15

AddExpr36

AddExpr5 MultExpr7

Figure 5.6 / Outer and inner search working
together to generate a derivation tree that
fulfills a constraint gathered from a decision
tree predictor. The dotted edge signifies the
hand-off from the outer search to the inner
search.

Generation Success How successfully can the learned decision trees generate
inputs that reach a given method?

Execution Extent Is there a difference in the number of methods reached with
inputs created by the targeted generation and those created by a grammar-
random approach?

Execution Frequency Are targetedmethods reachedmore oftenwith tree-guided
inputs than with grammar-random inputs?

The experimental pipeline introduced in Section 5.1.1 comes in very handy in
answering the above questions. Specifically, we extend it to branch out into three
parts that are responsible for driving experiments to answer a question each.

Generation Success

A central question is whether we can successfully use the decision trees learned
by Codeine for generating inputs to cover a given method. To answer this
question, our experimental pipeline first proceeds to invoke the generation
capabilities of Codeine for each subject. Considering that the decision trees that
we have learned in Section 5.1 usually have several Check-square leaves, we obtain a set of
inputs for each decision tree. From these sets, we define two coverage metrics:

Relative coverage fraction is defined as the number of inputs that do cover the
targeted method divided by the number of all inputs in the set.

Absolute coverage fraction is defined as the fraction of decision trees whose
input set includes at least one input that covers its intended method. This
expresses how many methods could be successfully covered at all.

Some caution is advised, as there might exist the possibility that covering the
methods in question is generally easy, regardless of the nature of the inputs. To
investigate this, we compare the results obtained from inputs generated with
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Table 5.3 /Coverage fractions achieved by Codeine versus grammar-random
generation.

Subject
Relative Absolute

Random Codeine Random Codeine

argo [8] 0.111 0.800 0.606 1.000
fastjson [2] 0.286 0.857 0.713 0.960
genson [19] 0.300 0.700 0.717 0.956
gson [44] 0.000 1.000 0.486 0.966
json-flattener [61] 0.000 1.000 0.463 1.000
json-java [72] 0.000 1.000 0.250 1.000
json-simple [62] 0.000 1.000 0.471 1.000
json-cliftonlabs [76] 0.857 1.000 0.941 1.000
minimal-json [117] 0.125 1.000 0.560 0.980
pojo [75] 0.000 0.500 0.240 0.680
autolink [118] 0.500 0.886 1.000 1.000
jurl [111] 0.948 1.000 1.000 1.000
url-detector [106] 0.833 0.852 0.949 1.000
rhino [92] 0.000 0.692 0.392 0.928
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Codeine to inputs generated randomly from the grammar. For a fair comparison,
the pipeline generates for each decision tree as many grammar-random files
using Grammarinator4 as are generated by Codeine. This is a scheme similar to
the one we successfully employed previously in Section 3.2.2. For example, if a
decision tree has four paths leading to Check-square nodes, Codeine will end up generating
four inputs, and so the pipeline will generate four random inputs to match.
Table 5.3 reports the results of this comparison. The relative coverage ratio is
measured individually per method, but due to space being limited even in a
dissertation, its median value is reported across all methods for each subject.
The absolute coverage ratio, however, is calculated per subject, and can thus be
reported directly.

Looking at the relative coverage ratios, we see that given the same number of
attempts, Codeine significantly outperforms random inputs, which oftentimes
fail to reach the targeted method at all. This observation is consistent across all
subjects except for jurl and url-detector, where random inputs are roughly
on par with Codeine. This indicates that the trees effectively reflect the input
features that are relevant to a method being covered or not.

The absolute coverage results tell us that for all but the three subjects of the URL
family, inputs generated by Codeine are indeed more likely to reach a given
method than inputs generated randomly. In the aforementioned three cases,
both approaches do equally well. This is due to the small size of the subjects
and thus most methods being easily reachable regardless of input specifics.

Now, for the remaining subjects the difference might seem negligible, and the
fact that all methods are indeed successfully reachable by randomly generated
files might be surprising. However, this is given by the construction of our
experiment: Codeine forms decision trees from randomly generated inputs and
can therefore only learn what is achievable by random inputs in the first place.

4Actually our own Grammarinator-like implementation, so that we can reuse the exact same
grammar files.
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Table 5.4 / Method coverage for Codeine (C) and grammar-random (R).

Subject

Covered Methods # Calls

C
oh

en
’s
d

Median Mean Mean

R C R C R C

argo 40 46 44.2 52.2 4.3 8.8 0.602
fastjson 28 35 29.9 39.9 8.8 10.5 0.101
genson 33 54 35.9 55.4 17.4 20.1 0.066
gson 27 76 35.8 73.0 4.0 8.8 0.366
json-flattener 17 27 17.9 25.5 464.6 464.1 0.000
json-java 7 21 9.7 20.7 3.1 8.0 0.458
json-simple 7 17 8.7 16.1 5.0 6.8 0.181
json-cliftonlabs 12 12 12.5 13.1 73.3 35.2 0.447
minimal-json 24 41 26.8 41.2 2.6 7.0 0.792
pojo 17 48 19.2 49.6 1.0 5.2 0.425
autolink 24 26 24.8 25.6 111.1 53.6 0.487
jurl 39 39 36.0 36.9 122.5 101.4 0.119
url-detector 44 37 41.1 33.3 881.9 123.4 0.796
rhino 264 343 270.4 334.8 3.8 181.0 0.082
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Nonetheless, our approach does identify the conditions under which a method
is reached, which is what explains why we observe a difference at all. We are
convinced that given specially crafted, exotic inputs that cover hard-to-reach
methods, this difference would be far more pronounced.

While it is not the main focus of the approach at hand, the inputs generated by
Codeine triggered between one and two orders of magnitude more exceptions
with unique stack hashes than inputs generated by the random grammar-based
approach across the seven subjects which have thrown exceptions.

Execution Extent

The next question concerns itself with whether, in general, inputs generated
from decision trees cover more methods as compared to random inputs because
of their supposed deeper reach into the program. To find an answer, we base
this experiment on the test set data obtained from the evaluation of predictive
capabilities as described in Section 5.1.1, as well as on the cumulative results
from the generative evaluation from the previous section. This effectively leaves
us with two large sets of inputs, where for every input we know the number of
methods it reaches. One set is composed of inputs generated randomly, and the
other comprises inputs generated by Codeine.

Table 5.4 gives in the first four columns the median and mean number of unique
methods covered by each file for the two input sets, denoted by R and C for
grammar-random and Codeine, respectively.

Our results show for 11 out of the 14 subjects that the inputs generated byCodeine
reach more methods per input in general. This is consistent with our hypothesis
that inputs generated by Codeine for the purpose of covering a specific method
usually cover more methods that are related to it. These tend to be methods
deeper on the call stack, which must be passed to reach the targeted method,
and also methods that are themselves called from the now reached target.
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This behavior speaks of a higher diversity of the inputs generated by Codeine,
which also tend to be much smaller than randomly generated inputs. For
instance, the inputs generated by Codeine have average sizes of 8.65, 12.06,
and 22.09 bytes for the three grammars, while files generated by the random
grammar-based approach are considerably larger averaging at 60.71, 80.75, and
60.92 bytes, respectively. In the context of testing, diverse inputs are favorable
for coveringmore behavior in a single run of the system under test. Also, smaller
inputs tend to reduce runtime and debugging effort, which is the main theme in
this chapter.

Note that this does not mean that Codeine reaches more methods than a random
generator. In our experiment, almost all methods were eventually reached
with both approaches. There were no methods that could be reached by either
approach exclusively, rather the number of methods that were reached per input
was different.

For a closer look, let us first consider the JSON parser gson as a subject that has
the most prominent difference in the number of methods covered in favor of
Codeine. At its core, it has a central loop with a switch statement, which uses
a lookahead to determine the type of the next structure and then delegates its
parsing to specialized methods. For example, it has dedicated methods such
as peekNumber() for looking up what kind of number should be read next, as
well as nextInt() and nextDouble() for consuming JSON numbers as integers
or double precision decimals. Due to the structure of the grammar, a random
generator is very likely to generate a single, top-level value such as “true” or
“null”. As such inputs lack the expected lookahead characters, no specialized
methods are called when parsing them. Conversely, Codeine is always guided
by some non-trivial condition, leading it to generate specific, but more involved
inputs that tend to cover more of those specialized methods.

On the other hand, we have json-cliftonlabs as a subject with no significant
difference in the coverage extent. It, too, contains a single loop with a big switch
statement as the centerpiece of its deserialization routine. For serialization, it
sports an if-else cascade of an equally impressive size. All processing happens
in these two locations, confined to two methods from which no other notable
methods are called. And almost regardless of the inputs, the parser always
takes the same methods to reach these central places, which explains why there
cannot be a significant difference in the number of methods reached, regardless
of the approach to input generation.

Finally, there is the url-detector subject, which is the only case where random
inputs cover more methods per input file. It works similarly to gson by delegat-
ing a lot of its work to individual methods from a central loop. Most notably
contributing to the difference in coverage, there are numerous methods that are
executed only in the presence of specific characters. One such example is the
readQueryString() method that is entered when a “?” is encountered, which
is something that is only generated by Codeine when it specifically tries to reach
a method that is involved in the processing of the so-called query part of a URL
and not on other occasions. The random generator creates inputs containing a
“?” much more frequently because it derives aimlessly.
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Execution Frequency

One could expect that inputs generated from decision trees, which describe the
precise conditions under which a method is called, would, in general, exercise
those methods more often than random inputs. And so, we want to know
whether this is the case. To answer this, our pipeline leverages the same inputs
as in the evaluation of the generation success, which gives us for every method a
set of inputs generated by Codeine and a set of the same size of inputs generated
randomly. Our experimental pipeline instruments the subjects so that not only
the method coverage, but also the method execution counts are reported. We
compare how often each method was executed by inputs generated specifically
for it by Codeine to how often it was executed by a set of random inputs of
the same size. We use the Wilcoxon signed-rank test [132] to determine if the
differences are statistically significant, and Cohen’s d [25] to calculate the effect
size.

While the differences are indeed statistically significant in favor of Codeine with
a 𝑝-value < 0.001 for all but the three URL subjects, they are very limited in
their size. The three rightmost columns of Table 5.4 show the average number
of invocations of the methods targeted by their respective decision trees for
the input sets generated randomly and by Codeine, as R and C, respectively.
The rightmost column shows the value of Cohen’s d calculated on the pairwise
differences. Most values are below 0.5, which can be interpreted as small to
medium effect sizes [108].

This observation, however, is consistent with the way Codeine is training its
decision trees: It uses the input features to learn a binary classification whether
a method is covered or not without taking the number of its executions into
account. Therefore, it generates sampleswhich simply cover the targetedmethod,
as opposed to samples which cover the targeted method as often as possible.

5.2.4 Threats to Validity
The evaluation in this chapter is, again, empirical in nature and so, it too, suffers
from threats to validity. Much like our experiments from Chapter 3, the ones
presented here also face several concerns.

When it comes to external validity, we observed a limited number of test subjects
and input languages, which might be far from being generalizable to software
in general. As the subjects are all libraries, the control flow must originate from
client code, which in turn means that we had to write test drivers ourselves. We
ensured that the test drivers exercised as much of the advertised functionality to
the best of our ability by accessing all documented public methods, but it may
be that some code was missed leading to underreporting of code coverage.

As far as internal validity is concerned, we do not account for the fact that some of
our features may syntactically depend on other features, thus leading to feature
correlation. For example, consider 𝑘-paths that are included in other 𝑘-paths
by construction, in which case it would not be advantageous to include both of
them in the same decision tree. Further, to avoid technical errors on our part, we
use proven implementations of well-researched statistical methods throughout
the experimental pipeline.
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Grammar ambiguity possibly deserves its own place in this list, as it is a major
source of trouble for the Alhazen tool when it comes to handling features of
inputs. In ambiguous grammars, there exist different derivation trees for the
same input, and so wemust use an expensive Earley parser [30] to be able to find
all such interpretations. From here, we consider that an input has a feature if it is
contained in any of the possible derivation trees. This by itself already presents
an over-approximation and thus a threat to generalizability, as different subjects
may interpret the same input differently, and so the presence of a feature may
or may not be factual.

5.2.5 Limitations
This approach is subject to several limitations, most of which can be addressed
by further research and engineering. Let us now briefly consider some of the
yet unsolved challenges.

Scaling. While the main focus is on improving the performance of the input
generation, the critical step of acquiring sufficient training data for mining
associations between input elements and individual input coverage is
expensive. However, we assume that the purpose of individual methods
rarely changes. Hence, in practice, it may suffice to extract models initially
once and then re-create them only periodically.

Expressiveness. Our models express coverage conditions over basic features of
input elements. As actual coverage conditions are undecidable in general,
our models can only approximate coverage conditions by construction.
This approximation could be improved by 1. Expanding the feature set
(e.g., make it project-specific); 2. Including further combinations of fea-
tures, such as disjunctions or comparisons; and 3.Adding internal features
relevant to program execution (e.g., features of program state).

Observability. We can only learn from what we can observe. Therefore, the
extent of the methods to which our approach can be applied hinges on
the amount of the training data we can obtain. In practice, we can usually
expect to profit from existing regression test suites or readily available
collections of test inputs found on the Internet. At the very least we can
attempt to fall back onto grammar-based generation.

Undecidability. In addition to the observability problem, for some methods,
it may be undecidable whether they can ever be reached and how the
conditions could ever be characterized other than through the program
itself. In practice, we would use our models to predict and generate inputs
for those methods where the models have sufficient expressive power.

5.3 Summarizing Feature Mapping
Let us briefly recap what we have observed in this chapter. We begin by asking
the question of how we can steer the generation of system-level inputs towards
specific locations in the code with the goal of improving fuzzing performance
by enabling inexpensive targeted generation.

We first take a detour by learning associations between features of inputs and
code locations, and manifesting them as decision tree predictors. We evaluate
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these predictors and deem them adequate for explaining which features relate
to which methods.

We then go on to devise a guided input generation process, based on the struc-
tural properties of the decision trees, that works by means of two intertwined
heuristic searches. In its evaluation we find that it copes with its task rather well
by consistently reaching the targeted methods better than a random approach
does.

With this in place, after having obtained decision tree predictors once, we can
generate novel inputs that are aimed at specific methods in the code without
the need to execute the system under test (SUT) for confirmation. This, in turn,
requires far less resources that have to be committed to whole-system execution,
thus freeing up more budget for improving overall testing performance in the
scope of the project lifecycle.



Chapter 6

Related Work

In this chapter, we take the opportunity to explore some relevant fuzzing ap-
proaches related to grammar-based and machine-learning-based techniques.
Individual sections provide a brief overview followed by some commentary
comparing the approach at hand to the ones presented in this dissertation. We
are mostly going to consider recent publications to keep this exploration of
related work short.

6.1 Grammar-Based Fuzzing
This section gives an overview of some representative examples of grammar-
based fuzzing of the recent decades. It proceeds chronologically along notable
steps in the development of grammar-based techniques, while providing com-
parisons to the 𝑘-path algorithm and its implementation tribble.

6.1.1 A Sentence Generator for Testing Parsers (1972)
Purdom [105] presents an algorithm for producing short sentences while using
all productions in a context-free grammar. The main motivation for this work
stems from the necessity of properly testing automatically generated parsers as
well as the programs that generate them. What is particularly interesting about
this work is that it was published 18 years prior to what is generally regarded as
the first publication on fuzzing by Barton Miller et al. [87]. Nevertheless, this
work has undeniable relevance to grammar-based fuzz testing.

It must be noted that the presented algorithm expects its input grammars to be
in a simplified Backus-Naur form (BNF) [12], where instead of alternations,
there are top-level productions with the same non-terminal on the left-hand side,
and where every production in the grammar is assigned a unique numerical
identifier.

As a first step, the approach pre-computes static information about the given
grammar, which comprises the shortest possible derivation production for every
symbol, and a mapping indicating which alternative allows including a given
symbol in the shortest derivation.

71
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Given this information, Purdom’s algorithm consecutively produces derivations
of the grammar’s start symbol, while choosing productions in an order that leads
to expanding as yet unused productions in the least number of derivation steps,
until all productions have been used. Once a production is marked as used,
the algorithm derives only the shortest possible words whenever this particular
production is encountered again.

The evaluation on two generated parsers [27, 28] and eight grammars demon-
strates that the presented approach can be very effective in covering parser states
and transitions for some grammars, while not being particularly effective on
others. Further, the author reports that multiple bugs were found in his own
parser generator implementation, which could not be found with other methods
at that time.

In comparison to the work presented here, Purdom’s algorithm actually always
generates a set of inputs that achieves full 2-path coverage. To see why this is
the case, we must rewrite our grammar to be in BNF, so we can apply Purdom’s
sentence generator in the first place. This rewriting requires us to effectively
undo all transformations we introduced in Section 2.2, and for every production
of the form A := B | C we obtain two productions A := B and A := C. Purdom’s
generatorwill aim to generate all newproductions, which effectively corresponds
to obtaining all paths of length two, i.e., all 2-paths in the grammar before
rewriting. In comparison, the 𝑘-path algorithm presented here is much more
generic due to the adjustable length of the production chains it can cover, and it
works with a more pleasant grammar notation to boot.

6.1.2 Geno (2006)
Lämmel and Schulte [70] present a context-free grammar-based generation
algorithm implemented as a tool called Geno, whose goal is to approach combi-
natorial coverage of a given grammar. To avoid the problem of combinatorial
explosion, it features several coverage control mechanisms that allow its user to
influence the derivation in terms of extent and number of explored combina-
tions. Geno’s user is assumed to be a test engineer who is experienced in both the
subject under test and context-free grammars. One motivation for the approach
is the desire to supersede pre-existing, purely stochastic approaches in terms of
control and achievable code coverage.

At the heart of the approach lies a bottom-up algorithm for generating inputs
from a grammar guaranteeing full combinatorial exploration of all possible
derivations. The authors concede that a bottom-up approach is less straight-
forward than a top-down approach, but maintain that it lends itself better to
immediate reuse of produced derivations as part of the algorithm. Then they go
on to introduce five control mechanisms for constraining the inputs generated
by the above algorithm. Individually, they allow narrowing the scope of the
targeted coverage conditions.

Depth control enables constraining the derivation depth for any non-terminal
that is used as part of the final input, and not only for the entire derivation tree.
Recursion control allows limiting the number of recursive expansions of any
given non-terminal reference.
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Balance control expands on the two previous ideas by enabling to specify the
range of depths of children that can be considered by the bottom-up algorithm
when constructing new nodes.
Dependence control gives power over the exhaustive derivation of concate-
nated rules; e.g., one-way testing ensures productions be tested independently
of each other, two-way testing prescribes the enumeration of all pairwise combi-
nations, while all-way testing forces total combinatorial exploration.
Construction control is a very general means of control as it allows attaching
conditions and computations to individual derivation rules, which makes the
grammar equivalent to a grammar with synthetic attributes [68]. The authors
show that the previous control mechanisms can all be implemented using con-
struction control, however, they also point out that due to performance reasons,
they opted not to do so.

To present the control mechanisms, the authors make use of two graph represen-
tations for context-free grammars, which find direct counterparts in our work.
Their constructor graph corresponds to what we call the grammar graph in that it
models all terminals, non-terminals, and their derivations. A difference between
these two graphs, however, is that our grammars come with additional kinds of
derivation rules, namely quantifications and regular expressions. The sort graph,
on the other hand, corresponds to the reachability map from Section 3.1.4 as it
serves the same function of mapping out which derivation rules are reachable
from which other ones. However, their sort graph does not include terminals.

The prototypical implementation Geno is written in the C# language and has
been evaluated, among others, on five small to medium-sized grammars. A case
study was presented that centered around a de-serialization of an XML-based
language, whose grammar contained 21 non-terminals and 34 alternatives. In
order to focus the testing efforts on different aspects, seven grammar variants
have been created, resulting in the generation of 200 000 test cases. The authors
report that the test cases generated by Geno were able to uncover approximately
25 % of all filed bugs for the subject, but alas, it is not clear whether these bugs
were novel findings filed by the authors themselves or already known previously.

The authors further point out that other tools, which were considered state-of-
the-art at the time, such as Korat [15], AsmL [86], or Unit Meister [121], were
not able to cope with the size of the problem.

Comparing Geno to our tool tribble, we can see that the latter requires much less
domain knowledge from its users, and is therefore more immediately applicable
to any given grammar and test subjects. To successfully deploy tribble in its
capacity as a grammar-based fuzzer it is sufficient to decide on the value of
the single parameter 𝑘 without careful consideration of the productions of the
grammar. On the other hand, Geno requires setting many control parameters
that are specific to the productions in the grammar.

6.1.3 Nighthawk and GCOs (2007)
Beyene and Andrews [13] present an approach that applies metaheuristic opti-
mization to grammar-based input generation. To point out a technicality, they
opt to automatically turn grammars into Java classes to leverage Nighthawk [3],
which is their already available genetic algorithm implementation specializing
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in generating method call sequences as unit tests. By calling special initialization
methods and providing them with appropriate parameter values, Nighthawk
can synthesize Java objects that represent derivations of the grammar. One
can obtain a string representation of these derivations by calling the getString
method, which is available on all generated instances.

The authors then use this setup to compare several metaheuristic optimiza-
tion approaches such as hill-climbing and simulated annealing to deterministic
approaches like depth-first search and rule coverage as well as manually crafted
conformance test suites. They compare the line coverage achieved by feeding
the inputs to two small Java subjects processing HTML and XML inputs.

Perhaps XML is not the best choice of input language for this comparison, as it
cannot be expressed by means of a context-free grammar, and the authors must
apply postprocessing to achieve matching opening and closing XML tags in the
inputs generated by the metaheuristic approaches.

As a result of their experiment, the authors come to the conclusion that both
the deterministic and metaheuristic approaches are quite complementary when
used for testing: while they already achieve significant coverage individually,
they can achieve even more when combined.

This work is similar to our own work on integrating structured object instantia-
tion into a genetic algorithmwith the goal of improving the coverage of generated
unit tests while decreasing their false positive rate [48]. However, our approach
uses an XML schema instead of a generic context-free grammar and performs
its structured string instantiations on the abstract syntax tree representation
dynamically generated specifically for a given subject.

6.1.4 Csmith (2011)
Yang, Chen, Eide, and Regehr [133] present Csmith, which is a fuzzer created
specifically with the goal of testing compilers of the C language. It generates
random C programs and uses the principle of differential testing [83] by running
multiple compilers and detecting disagreements in their behavior and results.
To make this possible, Csmith generates programs that are well-formed and
have a single interpretation when executed.

Specifically, Csmith generates programs that adhere to the C99 standard [57],
which leaves plenty of unspecified aspects to be interpreted at the compiler’s
discretion. In fact, there are 191 kinds of undefined behavior and 52 kinds of
unspecified behavior, all of which must not be part of the programs generated by
Csmith. It avoids these behaviors by using special wrappers that, amongst other
things, handle integer overflows in a well-defined manner, as well as provide
safety for types, pointers, effects, arrays, and initializers.

Additionally, to have results that are comparable between programs compiled
with different compilers, there is a test harness responsible for calculating a
checksum of an execution. This checksum is based on the state of all non-pointer
global variables in the program at the end of its execution. Whenever this
checksum differs for the same program compiled with different compilers, there
must be a bug in at least one of the compilers.
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Another goal of Csmith is to generate programs that are expressive, containing as
many features of the C language as possible, without falling victim to unspecified
behavior. For this, Csmith uses a grammar for the well-defined subset of the C
language, which is implemented as a collection of manually written C++ classes.
This grammar models such language constructs as statements, expressions,
functions, structs, arrays, pointers, various control flow constructs, etc.

Csmith always begins the generation of a new program with the creation of
several struct types containing random members of boolean, integer, or pre-
viously generated struct types. It can then use these types in the generation of
future components of the random program.

In the next stage, Csmith goes on to generate the rest of the program in a top-
down fashion, beginning with a function that will be called by main at the end.
While it is generating, Csmith holds a global environment containing top-level
definitions as well as a local environment containing the current call stack and
pointer analysis information about objects that may have been accessed in the
current scope.

The generation proceeds by choosing from productions of the grammar that
are admissible in the current context. This choice is governed by probability
tables comprising 80 production probabilities, on which the authors claim to
have spent substantial manual effort in order to make the resulting programs
contain a balanced mix of the different language features.

Once a production is chosen, a special check called filter is performed that decides
whether the selected choice is allowed in the current context, such as a continue
statement only being legal inside a loop. Should this not be the case, Csmith
simply retries with another choice. Otherwise, it proceeds with instantiating
the production as prescribed by the grammar.

Whenever a target is required to complete the current production, such as e.g.,
a variable, the generator may choose to either select a fitting one from the
environment, or to generate a new one. The generator recurses to process any
outstanding non-terminals, while propagating an appropriate environment state,
until the program is complete.

At the very end of the generation process, Csmith prints out the created com-
ponents in the appropriate order: type declarations first, then global variables,
and finally functions. Hereafter, it generates the main function, whose task it is
to call the previously generated top-level function, to compute the checksum
over all global variables, and, finally, to print out its value on the console.

It is very easy to generate a program that does not terminate and impossible to
detect it. To address the issue of non-termination, the authors use a timeout of
five minutes for compilations and five seconds for the execution of the compiled
program in their practical evaluation.

Over a period of three years, Csmith found 325 bugs in popular C compilers
including both commercial and open-source products. The majority of bugs
were found in GCC and LLVM with 79 and 202 reports, respectively.

While one can most definitely classify Csmith as a grammar-based fuzzer, it does
lack generality due to its singular, hand-coded, and highly specialized grammar
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representation of the C99 language specification. This makes it rather difficult to
compare against the approaches presented here. However, it is safe to say that
Csmith bears most similarities with random grammar-based generators, but it
comes extended with semantic constraints to guarantee successful compilation.
As a possible future work item to consider, it might be of interest to investigate
the grammar coverage achieved by inputs generated by Csmith, and possibly
improve the approach by extending it with a 𝑘-path-aware generation heuristic.

6.1.5 LangFuzz (2012)
Holler, Herzig, and Zeller [56] present LangFuzz, which is a blackbox context-
free grammar-based fuzzer. It works by mutating a given test suite of inputs by
inserting input fragments mined previously, to create inputs that are interesting.

LangFuzz uses a grammar in the ANTLR format to model the language it is
supposed to fuzz. In its first step, which comprises the learning phase, LangFuzz
parses given inputs into fragments which correspond to non-terminals. These
fragments are added to a common fragment pool.

Then the second step begins, where LangFuzz iterates over a given test suite of
inputs and mutates one input at a time. For this, the input is parsed using the
original grammar into an abstract syntax tree, in which a small number (usually
one to three) of non-terminal nodes are randomly selected for replacement. Each
node slated for mutation is removed, and a new value for the expected non-
terminal is inserted in its place either from the fragment pool or generated with
a depth-limited breadth-first expansion. In the latter case, after the generation is
finished, the remaining unexpanded nodes are filled with fragments or shortest
possible derivations if no fitting fragments are available in the pool.

After inserting fragments into their new environment, LangFuzz performs a
fix-up task, where identifiers inside the fragments are replaced by identifiers
already found in the rest of the derivation tree. This is done to increase the
chances of generating inputs that have the proper definition-reuse order for
languages like JavaScript. Additionally, LangFuzz has the option to provide a
list of globally known, or built-in identifiers, which will then not be rewritten in
fragments. For example, the JavaScript global object window, which is available
in the context of a browser, is one such built-in.

Once this second step is finished, LangFuzz has produced a new, mutated
test suite, which is then fed into the system under test (SUT) to see if any
crashes or hangs occur. After four months of operation, LangFuzz has detected
164 new defects in the two JavaScript engines employed in the browsers by
Mozilla and Google. Additionally, the authors conducted a second, smaller
experiment with the PHP interpreter and found 20 new bugs in two weeks.

LangFuzz is similar to tribble in that it, too, uses a generic context-free grammar
to produce syntactically valid inputs. The biggest difference between the two
approaches is that LangFuzz is capable of leveraging a body of input fragments,
yet has no order to its generation, while tribble, on the other hand, produces
only freshly synthesized inputs and strictly according to a 𝑘-path coverage plan.
In principle, it should be a matter of engineering to enrich tribble so that it may
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also leverage existing input fragments in its systematic generation, which might
be worthwhile future work.

6.1.6 StGP (2014)
Kifetew, Tiella, and Tonella [66] combine genetic programming with grammar-
based test generation. As a basis for their approach, they use so-called stochastic
grammars, which are context-free grammars whose alternations are annotated
with probabilities for choosing a derivation when generating inputs.

The authors mention two approaches for acquiring stochastic grammars from
context-free grammars: On one hand, the probabilities can be assigned statically
with 80 % chance allocated to non-recursive productions and 20 % to recur-
sive ones. The authors claim that this approach has been shown to produce
non-trivial derivations while not suffering from too much bloat when used for
generating inputs in practice. On the other hand, one can learn a probability
distribution from a given corpus of inputs using the Inside-Outside algorithm
from [71]. This is also the approach they went with in their empirical evaluation.

The other part of the approach at hand is genetic programming [104], or more
precisely, a genetic algorithm [78] because in this use-case the authors are not
evolving a program but rather an input, albeit a highly structured one.

The algorithm begins by generating an initial population of derivation trees
and randomly assigning them into suites at random. The initial generation is
done in two flavors: purely randomly and using a stochastic variant of the same
grammar trained on a given suite. The authors compare the performance of
the two flavors later in their evaluation. These suites of inputs represent the
individuals to be evolved by the genetic algorithm by applying genetic operators
with the goal of achieving the best possible fitness in a given budget.

The set of genetic operators that can be applied to the suites comprises the
insertion of a newly generated tree, the deletion of the least fit tree, as well as the
crossover of a subset of trees among two suites. There are also two mutations
that are applied to the individual trees with a probability of 1

|suite| : A subtree is
mutated by deleting a node selected at random and generating a fresh one in its
place. A subtree crossover is performed on two derivation trees by exchanging
subtrees rooted at the same non-terminal resulting in the creation of two new
derivation trees.

The genetic algorithm determines the fitness of a test suite based on the sum
of branch distances [85] to all branches of the test subject when executed. The
algorithm aims to evolve inputs that minimize the number of missed branches.

The authors have implemented their approach in a prototype called StGP as an
extension of EvoSuite [33]. They perform their empirical evaluation on three
subjects taking structured inputs, ranging in their size from small (2 KLOC)
to large (73 KLOC). Comparing the coverage achieved by inputs generated
with comparable resource budgets, the authors found that, unsurprisingly, the
genetic algorithm outperforms the random generator on the two bigger subjects.
When starting with a learned stochastic distribution, even more coverage can be
achieved even faster. The achieved coverage is equal across all approaches on
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the small subject due to fast and easy saturation. The same results also hold for
the fault exposing capability as evidenced by mutation score.

Three years later, the authors introduce type annotations that can be added man-
ually to the productions of the grammar in [67]. They extend their experimental
evaluation to compare their previous approach based on learning with the new
type-annotated genetic generation approach on six subjects, but fail to find any
statistically significant differences in the achieved code coverage.

While, again, not directly comparable to tribble as presented in the scope of this
work, StGP shares some similarities with our work on probabilistic grammars
in [114], where we use tribble to learn the common distribution of alternatives,
but also go on to invert them to produce valid, but rarely seen inputs. While
we do not use metaheuristic optimizations, our approach has also shown good
results on its own. Still, the idea behind stochastic grammars may find a direct
application in the 𝑘-path algorithm as one of its close-off stages in the future.

6.1.7 IFuzzer (2016)
Veggalam, Rawat, Haller, and Bos [126] present IFuzzer, which is a grammar-
based fuzzer that uses genetic programming for testing language interpreters.
It relies on ANTLR for generating the data model for derivation trees, which
serve as individuals in its genetic algorithm.

To begin its work, IFuzzer requires a grammar and a suite of initial samples. All
samples are first parsed into their constituentswith a parser generated byANTLR
from the given grammar; and their fragments representing non-terminals are
added to a pool, just like in the case of LangFuzz. Then, several full sample
inputs are selected to build up the initial population for the genetic algorithm,
which applies genetic operations to them in order to produce future generations
and find bugs in the SUT.

IFuzzer implements mutation in two variants: A random node in the tree is
either fully replaced with a fitting fragment from the pool, or a partial subtree is
generated in its place by performing uniform random derivation up to a limited
number of times. If any outstanding non-terminals remain, they are closed off
with pool fragments.

Crossover is done in a straightforward way by discovering and swapping nodes
that correspond to the same non-terminal in two trees.

The algorithm also makes use of the elitism mechanism [78] to preserve best
performing individuals across generations. Unfortunately, the authors fail to
specify how many individuals are preserved.

After performing mutation or crossover, the algorithm proceeds with a fix-up
phase, where undeclared identifiers are renamed to match the ones that are
already present in the host tree, just like LangFuzz used to do it.

Further, the authors devote quite some effort to limiting the bloat of the gener-
ated inputs. When calculating the fitness, parsimony pressure [115, 136, 102]
is used to penalize inputs that are getting too large. When applying genetic
operations, the size increase of the resulting inputs must not exceed a fairness
factor, otherwise the result is discarded before even proceeding to the fitness
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evaluation, and a new attempt is made with the same genetic operation. After
sufficientlymany such unsuccessful attempts, even the base input is permanently
removed from further participation in the algorithm. Beside these twomeasures,
IFuzzer applies an implementation of delta debugging [135] for JavaScript [40]
to further reduce the size of its inputs. This implementation seems to be aware of
the hierarchical version of delta debugging [89], however, the authors of IFuzzer
choose only to mention the classical variant for some reason.

When it comes to the fitness function that is used to evaluate the inputs produced
by the genetic algorithm, IFuzzer, interestingly, can still be called a blackbox
approach because it does not seem to require any instrumentation of the SUT.
The fitness of individual inputs considers two components: structural properties
of the generated inputs themselves, namely the cyclomatic complexity [82],
as well as feedback from the SUT, such as warnings, errors, crashes, or hangs.
Unfortunately, the authors fail to specify how exactly these values are acquired.

All parameters for the genetic algorithm such as rates of crossover and mutation,
or the number of generations to carry out were chosen by the authors empirically
based on preliminary test runs. The authors evaluated IFuzzer on two versions
of Mozilla’s SpiderMonkey JavaScript interpreter [93].

To be able to compare their results to those of LangFuzz, the first experiment
was targeted at the same version 1.8.5. The initial input suite came from
Mozilla’s development test suite of 3000 inputs, which was also used in the
original LangFuzz evaluation. IFuzzer found 40 bugs in one month of operation
with 24 of them overlapping with those found by LangFuzz in three months.

In their second experiment, the authors targeted SpiderMonkey version 38 and
found 17 bugs of which 4 were deemed exploitable by Mozilla. Unfortunately,
the authors fail to mention the duration of this fuzzing campaign and merely
mention that on average bugs are found after 90 to 95 generations.

Similarly to LangFuzz, IFuzzer is also closely related to tribble in its goal of
generating inputs that optimize for variety. Targeting the generation of programs,
IFuzzer mostly measures variety in terms of the cyclomatic complexity of its
generated inputs, which is actually rather close to tribble’s generation algorithm
that is also concerned with covering all possible paths through the program,
albeit limited to a given value of 𝑘. Inspired by IFuzzer, it might be interesting to
investigate the performance of a genetic approach to achieving 𝑘-path coverage.

6.1.8 Skyfire (2017)
Wang, Chen, Wei, and Liu [130] introduce Skyfire, which they present as an
approach to generate seed inputs for fuzzers. It works by learning a so-called
probabilistic context-sensitive grammar (PCSG), given a context-free grammar
and an initial set of inputs. It is also possible to treat Skyfire as a standalone black-
box fuzzer by using the inputs it generates directly, but the authors’ evaluation
suggests that this usage significantly decreases the fuzzing effectiveness.

The PCSGs that are central to this approach can be characterized by the two aug-
mentations they introduce on top of productions in context-free grammars. First,
in a PCSG, every production rule is associated with a context that is supposed to
model semantic constraints, in which the non-terminal given by the production
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can be expanded. The context of a non-terminal is a tuple containing three levels
of its ancestor nodes and its first sibling. While the authors do acknowledge
that this information is insufficient to capture arbitrary semantic constraints that
may occur in practice, they maintain that it is sufficient to capture their diversity
and to keep production rule redundancy low.

Secondly, every production in a PCSG is associatedwith a probability representing
how often it occurs in the set of inputs the grammar was learned from. The
probabilities are computed such that their sum over all productions of the same
non-terminal equals one, regardless of the application context. Note that this
only effectively accounts for top-level alternatives, while, in its implementation,
Skyfire uses ANTLR grammars, which allow alternatives to be nested at any
level in the right-hand side of a production rule. The authors do not mention
whether and how such cases are handled.

Skyfire operates in two phases: the learning phase and the generation phase. In
the learning phase, a PCSG is extracted from a given set of inputs. Provided
a context-free grammar in the ANTLR format, Skyfire parses the inputs into
abstract syntax trees, and for every node stores its context and computes its
probability by dividing the number of occurrences in its context by the number
of occurrences across the entire input corpus. It then augments the production
rules of the original grammar with this information and stores them in a pool to
be used in the following phase.

The generation phase uses the PCSG learned in the previous phase to generate
inputs to function as seeds for other, mutation-based fuzzers likeAFL. Skyfire has
three main goals for the inputs it generates: syntactic and semantic correctness,
diversity, and uncommonness. The correctness is guaranteed by the grammar
itself, while the responsibility of producing diverse and uncommon inputs falls
to the generation algorithm.

The algorithm uses left-most random derivation that is bound by a timeout as a
means to guarantee termination. In short, starting from the root non-terminal,
the left-most non-terminal is expanded by a production chosen at random from
the set of productions that are applicable in the current context. Skyfire employs
four heuristics designed to help with termination and to constrain bloat:

1. Productions are partitioned into low and high probability sets by ordering
them by probability and splitting at the largest gap. During generation,
in 90 % of cases, productions are chosen from the low probability set to
encourage uncommon structures.

2. No production may be applied more than three times.
3. Productions with fewer constituent non-terminals are preferred.
4. Productions are not expanded more than 200 times.

If an input cannot be generated in the given timeout, it is discarded, and the
algorithm begins anew.

After a set of inputs is generated, Skyfire filters out those that do not increase the
code coverage in the SUT by using gcov [37] for open-source subjects and PIN-
based [77] instrumentation otherwise. Then, terminal symbols are randomly
mutated according to the grammar rules, thus finalizing the generation phase.
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The authors carried out an empirical evaluation on two XSLT processors, the
libxml2 [103] XML library (sharing the same grammar), and the closed-source
JavaScript engine in the Internet Explorer 11 browser. The sample inputs were
mined from the Internet using Heritrix [90], and the grammars to parse them
come from ANTLR’s community grammar repository [38]. Where possible, the
experiments are relying on AddressSanitizer [110] to detect memory issues.

The authors compare the bug-finding capability as well as the achieved code
coverage of three configurations: a) the initial inputs, b) AFL seeded with the
initial inputs, and c) AFL seeded with inputs generated by Skyfire. The results
show that configuration c) is the most effective by a significant margin in both
coverage achieved and bugs found. With it finding 19 novel memory corruption
issues across its test subjects, Skyfire has been shown as a useful seed generator
for mutation-based fuzzing.

When comparing Skyfire to tribble, one can observe that both approaches share
similarities. They both define a notion of context that is based on the derivation
tree representation of inputs. Skyfire’s choice of considering three levels of
“inheritance” comes very close to our own recommended value 𝑘 in our 𝑘-paths.
However, the sibling node included in Skyfire’s notion of context makes the task
of systematically achieving full coverage largely infeasible because it results in
exhaustive two-way combinatorial testing.

Both tools support probability annotations for production rules, although in the
case of tribble, probabilistic generation was evaluated in its own setting in [114]
rather than as part of the 𝑘-path algorithm as introduced in Chapter 3.

Both approaches employ bloat control mechanisms, although the hard-wired
limits implemented in Skyfire seem less adaptable for use with arbitrary, yet
untested grammars.

Finally, the inputs generated by both approaches are equally well suited for
further processing by mutational fuzzers. It might be especially interesting to
evaluate the performance of tribble’s more lightweight approach to designating
context in comparison with Skyfire as part of future work.

6.1.9 Grammarinator (2018)
Hodován, Kiss, and Gyimóthy [54] present Grammarinator, which is an open-
source, grammar-based blackbox fuzzer implemented in Python, and whose
inputs are grammars in the same format as used by ANTLR. Given a grammar
file, Grammarinator generates an un-lexer and un-parser, which can be thought
of as the counterparts to the traditional lexer and parser that ANTLR would
normally generate. As such, these two components have methods to generate
individual grammatical parts instead of parsing them. By calling the generation
method corresponding to the root element of the grammar, an input can be
generated from scratch. Similarly to how a parser would parse a token stream,
the un-parser generates one.

Whenever there is an alternative derivation to take, a decision is made which
token to generate. In order to avoid generating trees that are too deep, Gram-
marinator precomputes the minimum derivation depth that each alternative
requires, and uses a user-defined depth parameter to restrict its choice to those
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alternatives inside this limit. Further, to encourage covering all possible alter-
natives without doing so systematically, every time Grammarinator makes a
decision, it decreases the probability to make the same choice again by a so
called cooldown factor, which is a constant provided by the user.

In addition to generating random inputs from scratch, Grammarinator can parse
given inputs into derivation trees and apply mutation and recombination to
them, thus creating new inputs. To increase customization, a user also has the
possibility to add one or more transformers, which get a derivation tree as input
and may rewrite it arbitrarily. This mechanism can be used, for example, to
insert whitespace into the output to make it syntactically valid in case it was not
included in the original grammar, or to apply some context-sensitive fix-ups like
setting specific values to parts of the input that depend on other parts.

In contrast to tribble, Grammarinator specifically eschews the systematic cov-
erage of alternatives, relying instead on randomness to achieve variety in its
inputs. This results in lower achieved code coverage under comparable gen-
eration conditions as we have seen in the empirical evaluation presented in
Section 3.2. However, implementation-wise, there are several commonalities
to the tools: tribble also precomputes static information about the grammar to
enable efficient derivation as introduced in Section 3.1.4, and it also features a
close-off mode delimited by a user-provided maximum depth shown in Algo-
rithm 3, which was inspired by Grammarinator. And while tribble presents the
technical basis for a cooldown-based alternative selection strategy like the one
used by Grammarinator, it does not make use of it in its generation algorithm
implementation. On the other hand, by default, tribble lacks both postprocessors
and the functionality to parse and mutate existing inputs.

6.1.10 Nautilus (2019)
Aschermann, Frassetto, Holz, et al. [9] present Nautilus, which is a grammar-
based, coverage-guided fuzzer. Being a white-box fuzzer, it requires the source
code of the application under test so that it can be compiledwith instrumentation
to report the code coverage achieved during execution.

Starting from a grammar, Nautilus works by first generating an initial set of
inputs. It features two generation modes: On the one hand, there is a naïve
random generation mode, which uniformly picks from applicable derivation
rules to create an input. To prevent the over-representation of trees that are
easily derived, the resulting inputs are checked and discarded if they have
been used recently already. On the other hand, there is the uniform generation
mode, where Nautilus takes the length 𝑛 of strings to produce, and follows the
algorithm presented by McKenzie [84] producing inputs that are uniformly
sampled from the set of all inputs of length 𝑛. Although this algorithm is not
very efficient, being quadratic in time and space, it avoids any bias the grammar
might impose on the reachability of certain inputs due to its syntactic structure.

Having generated an initial input set, Nautilus proceeds by executing the SUT
and measuring the code coverage of each input. Upon finding an interesting
input that triggers new code coverage, it is minimized. The inputminimization is
done in two steps, applied sequentially: First, individual subtrees are minimized
by replacing non-terminals with their shortest possible derivations as long as
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the input still gives the same coverage when fed into the SUT. Second, trees are
minimized by recursively replacing subtrees with their descendant subtrees
when they represent the same grammar element, thus shrinking the trees even
further. This step is also repeated until the coverage achieved by the resulting
input changes.

Finally, the minimized input undergoes several phases of mutation comprising
different subsets of the following mutation operators:

Random Mutation replaces random nodes in the tree with freshly generated
nodes that fit the same non-terminal.
Rules Mutation sequentially replaces each node of the input tree with a subtree
corresponding to each admissible alternative derivation rule.
Random Recursive Mutation identifies recursive cycles in the tree and ampli-
fies them 2𝑛 times for a random value of 𝑛 between 2 and 15.
Splicing Mutation selects random subtrees from other trees in the queue and
swaps them with fitting nodes in the currently mutated tree.
AFL Mutations comprise a set of mutations as implemented in AFL [134] such
as bit flips, arithmetic mutations, and insertion of interesting values.

The generation supports a post-processing phase for applying transformations
to the mutated tree. Nautilus can afford to not impose any restrictions on their
complexity because it is a purely generative approach with no need to parse
existing inputs. These transformations can be used to ensure non-context-free
conditions such as matching XML tags.

After any such transformations, the tree is unparsed into the string it represents
and fed into the SUT. Nautilus uses a JSON format for its grammars, but also
has a converter from ANTLR. However, to produce syntactically valid strings
using ANTLR grammars, oftentimes whitespaces must be added manually.

In their evaluation, among other experiments, the authors performed a manual
case study of security issues in the mruby interpreter [94]. After inspecting
previous bugs, they came to the conclusion that a high lexical and syntactic
variety is, in fact, not necessary to trigger the same classes of bugs. Therefore,
they constrained their Ruby grammar to contain only a small set of integers,
strings, and identifiers, as well as only one syntax for method calls. They were
successful with this grammar variant in finding six CVEs.

This adaptation of the grammar is a good example of the old exploration vs.
exploitation trade-off. The authors have chosen to restrict the exploration of all
possible lexical and syntactic values to favor more exploitation of a well-known
set of constructs to make better use of the fuzzing resource budget, i.e., time.

It is difficult to compare Nautilus to tribble because of how different the two
approach coverage. For Nautilus, the only incentive comes in the form of novel
code coverage, although the authors mainly report its performance in terms of
the bugs found, whereas tribble is designed to guarantee coverage of the input
language, or more precisely its grammar.
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6.1.11 Superion (2019)
Wang, Chen, Wei, and Liu [131] present Superion, which is a grey-box mutation-
based fuzzer. It is implemented as an extension of AFL, to which it contributes
several grammar-aware components based on ANTLR.

One of the steps in the process of the original AFL is the trimming of inputs, where
random chunks of inputs are systematically removed in a byte-wise fashion.
In the context of fuzzing programs that process highly structured inputs, this
technique simply breaks most inputs, thus rendering them unusable, because
they are merely discarded by the parser of the program under test. Superion
changes this strategy by parsing the input into its derivation tree according
to a user-provided grammar and systematically removing subtrees as long as
the code coverage induced by the input remains the same. This approach to
minimization ismuchmore effective at preserving the syntactic validity of inputs.
However, as the authors themselves note, both the parsing and the execution of
the subject in-the-loop result in a significant slowdown. What the authors fail
to mention is whether any removed elements are considered obligatory by the
grammar, thus producing invalid inputs after all.

In the step following the trimming, AFL employs mutation of inputs, for which
it sports an impressive array of bit and byte twisters, which have the same input-
breaking properties as the original input trimming above. Here, Superion adds
its two mutation strategies.

On one hand, there is the enhanced dictionary-based mutation, which does not rely
on a grammar: Based on the assumption that most tokens consist of alphanu-
meric characters, Superion identifies contiguous arrays of bytes corresponding
to characters in the alphanumeric range. It then proceeds to either insert in-
between or overwrite completely these arrays with values from a dictionary
provided by the user, or mined by AFL from the program under test.

On the other hand, Superion adds the tree-based mutation, which fully leverages
the grammar for parsing inputs. The algorithm takes two trees as arguments: a
target tree to which mutations are to be applied, and one additional tree which
serves as a source of subtrees. In order to constrain the size of the mutated trees
and prevent excessive execution times, any inputs larger than 10 kB are skipped
and left unprocessed. First, the mutation algorithm copies all subtrees smaller
than 200 B from the two input trees into a common subtree pool. Then it applies
up to 10 000 mutations by iterating the subtrees in the target tree and replacing
them with subtrees from the pool taken at random. Unfortunately, the authors
fail to specify the iteration order in which these replacements happen, which
could have an effect in realistic fuzzing campaigns with limited time budgets.
Also, the size limits have been determined by the authors empirically based on
their experiments.

The authors performed a practical evaluation of their tool on one parser of an
XML-based language (Apple Property List) and three JavaScript interpreters.
They crawled thousands of input samples from the Internet, preprocessed them
to remove comments, and used afl-cmin to minimize the number of samples
that actually give new coverage, ending up with 534 and 2569 seed inputs for
XML and JavaScript, respectively.
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After a fuzzing campaign of three months, Superion found 31 new bugs, of
which 21 were novel vulnerabilities and 16 received CVE identifiers. AFL only
found one bug in one JavaScript interpreter and 5 in the Apple Property List
parser. Further, Superion outperformed AFL on average by 16.7 % and 8.8 % in
line and function coverage, respectively. Additionally, the authors compared
Superion to jsfunfuzz [107] and the latter only found minor out-of-memory
issues in the two JavaScript interpreters to which it could be applied.

Being a purely mutational fuzzer, Superion strongly relies on readily available
valid inputs to operate on as well as on continuous feedback from the subject
during the course of the fuzzing campaign. In this setting, tribble could easily
serve as a generator of such an initial set of inputs, possibly leading to a similar
effect as was observed in the case of Skyfire.

6.1.12 EvoGFuzz (2020)
Eberlein, Noller, Vogel, and Grunske [31] present evolutionary grammar-based
fuzzing, which contributes a genetic algorithmas an extension to the probabilistic
fuzzing approach based on learned distributions presented in [114]. Given a
grammar and a set of input samples, the original approach learns a distribution
of probabilities of the grammar’s alternatives from the sample set once and is
then able to produce inputs that have similar structure. The authors integrate
this learning of probabilities as part of a feedback loop, implemented in a genetic
algorithm, whose goal is to generate complex, failure-inducing inputs.

Specifically, the authors implement the algorithm’s fitness function to maximize
the ratio of derivation steps to the overall size of the inputs, thus encouraging
the generation of inputs whose derivation trees have more nodes, while at the
same time punishing large, but simply structured inputs. Further, if an input
causes an exception to be thrown, its fitness score becomes infinite, and the input
is kept until the end of the search process.

The authors employ classic mechanisms of elitism [29] and tournament selec-
tion [88] as part of their genetic algorithm. The fittest individuals from a given
generation serve as the basis from which the original approach is invoked to
learn a new probabilistic grammar for the next generation. The obligatory muta-
tion step of the genetic algorithm is then applied to this newly learned grammar
by randomly reassigning probabilities of alternatives to prevent genetic drift.
However, the authors do not argue about the effectiveness of this preventative
measure. The evolution terminates upon reaching a specified timeout.

The authors implement their approach in a tool called EvoGFuzz, which they
evaluate on ten subjects across three grammars for JavaScript, JSON, and CSS3
that were also used in the evaluation of the original approach in [114]. They
set the number of probability mutations to one per generation, the size of the
population to 100 inputs, the overall timeout to 10 minutes, and they repeat the
entire experiment 30 times.

Their experiments show that the inclusion of a search-based approach leads
to significant increase in achieved line coverage and triggered exceptions in
comparison with the original approach. However, the authors note that these
better results come at the cost of increased run time.



86 CHAPTER 6. RELATED WORK

A comparison of this approach with tribble is interesting to make because it
actually uses tribble under the hood, albeit for the purposes of probabilistic
generation. Nevertheless, it is conceivable to enhance the 𝑘-path-related func-
tionality of tribble with a search-based approach. A genetic algorithm could
be useful to achieve higher input variety across different 𝑘-paths, provided a
fitness function that scores 𝑘-paths as well as a mutation function that is able to
change inputs to contain random 𝑘-paths.

6.1.13 Bonsai Fuzzing (2021)
Vikram, Padhye, and Sen [127] present a grammar-based fuzzing approach
called bonsai fuzzing, whose main goal is to generate terse inputs. It uses a
bottom-up generation algorithm that is governed by three parameters 𝑚, 𝑛, 𝑑,
which correspond to the number of identifiers, the expansion limit for Kleene-
star repetitions, and the maximum recursive derivation depth for non-terminals,
respectively. As such, this approach has tight requirements on the grammar in
question, and its applicability on generic context-free grammars, which do not
have dedicated identifiers, repetitions, or recursion, is questionable. Additionally,
the set of identifiers has to be known statically, so that its values can be pre-
instantiated before the fuzzing process begins.

The approach is based on a practical application of the authors’ mutational
fuzzer Zest [98] as part of a classic coverage-guided loop [14]. This results
in mutating a pool of inputs in a time-bound loop and accumulating mutants
which fulfill an interestingness criterion. By default, this criterion demands the
inputs to produce new code coverage and to be semantically valid, i.e., not cause
the SUT to return with an error.

Inspired by the iterative deepening approach to depth-first search [69], the main
idea of bonsai fuzzing is to apply the above fuzzing loop inside of yet another
loop, while incrementing the current values of the 𝑚, 𝑛, and 𝑑 parameters one
by one, thus mutating smaller, valid inputs so that they grow in size until they
reach a limit given by the user-provided parameter bounds.

To additionally enable the generation of invalid inputs, the authors introduce a
variant of their algorithm where they tweak the interestingness criterion to only
require novel coverage and disregard the semantic validity.

The authors evaluate their technique in terms of conciseness, mutation score, and
code coverage against a baseline two-stage approach consisting of first fuzzing
and then reducing the size of the generated inputs. This baseline leverages
state-of-the-art implementations [53, 52] of character-level and hierarchical delta
debugging [135, 89].

They carry out their experimental evaluation on two subjects: ChocoPy – a
compiler for a statically typed subset of the Python language for educational
purposes [99] as well as Google’s Closure Compiler – an optimizing JavaScript
transpiler [39]. Based on the results of their evaluation, the authors conclude that
their technique is effective in producing concise inputs while not significantly
sacrificing the capability to detect faults and cover code compared to the more
traditional baseline approach.
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Compared to tribble, bonsai fuzzing seems to be applicable to a very specific
setting, in which the input grammar belongs to a programming language, where
the number of identifiers seems to play a particularly large role when it comes
to input terseness. Since the authors did not evaluate the performance of the
𝑘-path algorithm in practice, this might be a great topic for future work.

6.2 Input Feature Associations
This section lists some machine-learning approaches that are related to tech-
niques we use in Chapter 5 to establish and use associations between input
features and code. Beside summaries of the individual related works, comments
elaborating on the comparison with Codeine are provided.

6.2.1 XSS Analyzer (2013)
Tripp, Weisman, and Guy [122] present XSS Analyzer, which is a commercial
approach for finding XSS vulnerabilities in WEB applications. It leverages a
grammar to learn features of attack inputs, which allows it to efficiently perform
an attack search on its attack sample collection of half a billion inputs. They
specifically highlight that storing the sample collection as a grammar results in
a significant size requirement reduction as opposed to storing it as plain text
because it allows denoting entire families by means of just several productions.

In the setting presented by the authors, a web application is protected by a
so-called sanitizer routine, whose purpose is to filter out malicious requests by
applying some attack detection criteria. The authors formalize that a primitive
sanitizer transforms an input into an ostensibly harmless variant if it satisfies a
predicate identifying it as malicious. Further, the authors define that generally, a
sanitizer is either primitive, a composition of two sanitizers, or a nested sanitizer
applied in a loop.

Based on this representation, a sanitizer can be vulnerable to an input in two
ways: either is simply does not recognize a malicious construct, or it mistakenly
recognizes a benign input as an attack and turns itmalicious by applying its trans-
formation. The presented approach accounts for both kinds of vulnerabilities,
which are referred to as structural and bypass vulnerabilities.

The learning-based search algorithm works by systematically supplying inputs
to the sanitizer under test and learning which features lead to rejection, so
this knowledge can be used to avoid submitting inputs sharing these same
features. This procedure is designed to save a lot of resources by avoiding an
overwhelming number of sanitizer invocations that would certainly result in
rejections. Since the search space, which is the sample collection, is stored as
a grammar, the knowledge about rejected features can be easily manifested by
removing all productions that contain these features. The features the authors
chose for their learning approach comprise individual symbols of their grammar,
making it corresponds to our 1-path criterion.

Bypass vulnerabilities are handled by applying a number of predefined rewrite
strategies to symbols that are rejected by the sanitizer. For example, if a sanitizer
transforms inputs by replacing occurrences of lowercase “script” with the
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empty string, then the bypass rewrite strategy “<SCRscriptIPT>” would force
the sanitizer to mistake this benign token for a malicious one and rewrite it to
“<SCRIPT>”, which is actually malicious.

XSS Analyzer is implemented in C# and uses ANTLR [100] to describe its 500mil-
lion attack input samples by means of approx. 1000 productions. It is now part
of the AppScan tool by IBM.

The authors performed an empirical evaluation on 15 552 sanitizers comprising
sanitizers taken from real-world applications as well as ones that were written by
their in-house security experts. They evaluated the performance of XSS Analyzer
and found that their approach of pruning the sample grammar with every newly
rejected feature vastly outperforms three other contending approaches in terms
of the ratio of vulnerabilities found to requests executed: a) the previous version
of AppScan, b) 19 different configurations of random search applied to the
sample collection, and c) the brute force trial of the entire sample collection.

While this approach does not have too much in common with Codeine, it would
be interesting to see if it could profit from extending its relatively simple 1-path-
like features to 𝑘-paths, as the latter are capable of describing much more precise
input constructs.

Further, the idea of pruning the grammar to obtain a specialized sub-grammar,
which reflects only the relevant features, resonates really well with our use case
coverage prediction use case. A sub-grammar can be parsed more efficiently,
and therefore, both the feature extraction and the classification can profit from
the speed up.

6.2.2 Predicting Branch Coverage (2018)
Grano, Titov, Panichella, and Gall [43] present an empirical study of three
machine learning models on how well they can predict the code coverage that
an automated test generation approach can achieve given a class under test.
Specifically, they consider the EvoSuite [33] and Randoop [97] test generators.

The authors first seek to answer whether standard code complexity measures are
suited to serve as features for the task of coverage prediction in the first place. As
their candidate features they consider a selection of established code complexity
measures taken from the object-oriented metrics introduced by Chidamber and
Kemerer [22] such as the number of branches in a class, as well as from the tool
JDepend [24], whose metrics were originally developed to assess the quality
of a Java package such as the total number of abstract and concrete classes. In
addition, the authors consider reserved Java keywords such as instanceof.

In their first experiment, they evaluated three machine learning approaches
comprising Huber regression [45], support vector regression [20], and the
multi-layer perceptron [95] on four different open-source subjects from different
domains and ranging in size from 848 to 220 573 lines of code.

As a comparisonmetric they used themean absolute error over a three-fold cross
validation. Their results show that the two non-linear predictors outperform
the Huber regressor, but also that is it indeed possible to predict test coverage
based on classic code complexity measures applied to the class under test.
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In a second, separate experiment the authors set out to find out to what extent
can coverage be predicted. To this end, they apply the support vector regression
model trained in the previous experiment to three additional open-source Java
library subjects. On these subjects the predictor performs worse, hinting at
possible overfitting to the training set. Additionally, the mean absolute error is
smaller for the random Randoop generator than for the genetic EvoSuite tool.

Overall, the authors conclude that with better feature selection and a more
appropriate predictor the task of predicting coverage seems achievable. With
this in mind, we can see how such additional complexity-based features could be
applied to Codeine as well, which could involve measuring both the complexity
of the generated inputs and that of the method under test.

6.2.3 ML-Driven (2018)
Appelt, Nguyen, Panichella, and Briand [6] present a blackbox technique for
generating SQL injection attacks for bypassing a web application firewall using
machine learning and evolutionary algorithms. In their use case, a web applica-
tion firewall (WAF) is deployed as a facade service in front of a SQL database,
so that it can monitor incoming queries and filter out those it deems malicious to
protect the database. Specifically, the authors implemented their approach titled
ML-Driven as an extension of their previous work in [5]. To function, ML-Driven
relies on the presence of a context-free grammar that models possible attacks in
a sufficiently general manner.

First, a training set of inputs is generated using a uniform grammar-based
random generation approach. This input set is used to train a machine learning
classifier, whose goal is to predict whether the input will bypass the WAF or
not. The features that are considered in this approach consist of all possible
leaf-bearing subtrees of the derivation tree of an input. The authors evaluate the
performance of using a RandomTree and a RandomForest [17] as the classifier
of choice and come to the conclusion that there is no significant difference apart
from the RandomForest being computationally more expensive.

A RandomTree only differs from the classic decision tree as we use it in Codeine
in that it considers a random subset of features from which its decision nodes
are formed. This has a clear performance advantage because not all features
have to be extracted and considered, which might be a worthwhile experiment
to conduct on Codeine as well. Especially so because our features, which are
𝑘-paths, sometimes correlate, e.g., when longer paths include shorter ones. This
way, considering all 𝑘-paths at all times might be superfluous.

On the other hand, a RandomForest comprises an ensemble of RandomTree
classifiers and applies majority voting to their individual outcomes to obtain
the overall classification. While this scheme could be applied to Codeine, it is
unlikely to be advantageous because in addition to worse performance, it would
also be much harder to interpret.

Having obtained the initial classifier, ML-Driven engages a genetic algorithm,
which ranks inputs by their probability of bypassing the WAF as calculated
according to the classifier, and then mutates the best candidates to produce
so-called offsprings. These offsprings are then evaluated against the WAF, and



90 CHAPTER 6. RELATED WORK

observations whether they bypass it are added into the training set, which is
used to re-train the classifier. This procedure is carried out in a loop until a
timeout is reached.

When mutating inputs to create offsprings, ML-Driven replaces randomly se-
lected subtrees with compatible subtrees that fulfill the same path constraints
from the corresponding decision tree. This is similar to the heuristic search
employed by Codeine, except that in Codeine this process happens only when
creating fresh inputs to fulfill a given constraint.

The number of inputs mutation is applied to, and the number of offsprings
created for each input are controlled by a parameter governing the trade-off
between exploitation and exploration. In their previous work, the authors devel-
oped two variants of ML-Driven: one geared towards exploitation and one for
exploration. They have found that one approach is better in the beginning of the
evolutionary search, while the other performs best towards the end. Therefore,
in this work, they combine the two approaches by dynamically adjusting this
parameter to divide the test budget among mutating inputs proportionally to
their probability of bypassing the WAF over the course of the evolution process.

The result of this process is a set of inputs that are bypassing the WAF protection
and are valid according to the initial grammar. Additionally, the path constraints
that can be extracted from the trained classifier cannot be directly translated into
human-readable patterns because they represent opaque subtrees, whereas in
Codeine grammar patterns are a direct result of using 𝑘-paths as features as we
have seen in Section 5.1.2. However, the authors do present a human-in-the-loop
approach for turning the path constraints into regular expressions to repair the
WAF so that it correctly blocks more attacks.

Finally, the authors evaluate ML-Driven on two WAFs using their previously
established testing tool named Xavier [7]. Their experiments show the improved
approach, which dynamically adjusts the mutation, outperforming the other
two configurations as well as two state-of-the-art tools for SQL attack generation.

It shall be noted, that the SQL attack grammar that ML-Driven is evaluated
with lacks loops and therefore describes a regular language. Together with
the fact that the WAFs evaluated use regular expressions as their means of
discerningmalicious queries, this raises some suspicions as to the applicability of
ML-Driven to not only context-free grammars, but truly context-free languages.

Another concern is performance. While using a RandomTree classifier allows
ignoring large parts of input features, the mutation procedure as described in
the paper, seems to consider all possible features after all. This might lead to
problems with deeply nested and cyclic grammars and inputs.

The biggest difference when comparing ML-Driven to Codeine, however, lies in
the fact that Codeine does not employ an optimization loop, which is due to the
fact that it is difficult to optimize many classifiers (i.e., one per target method)
at once, but brings with it the advantage of speed, as there is no need to either
re-train the classifiers or execute the subject along the way.
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6.2.4 Predictive Mutation Testing (2018)
Zhang, Zhang, Harman, et al. [137] present predictive mutation testing, which
is a technique for predicting whether a mutant will be killed by a given test
suite without executing it. This research is motivated by the widely recognized
problem that mutation testing is very computationally expensive, so much, in
fact, that it hinders practical adoption beyond academia.

The presented approach works by training a machine learning model based
on code features of the tests as well as the mutants themselves. The authors
subscribe to the PIE theory [129, 64] stating that a mutant can be killed only in
the presence of 1. the execution of the mutated statement, 2. immediate infection
of the program state, and 3. its propagation into the test output. Therefore, the
authors manually design easily obtainable features that aim at predicting each
of these conditions.

As features related to the execution, the authors count how often every statement
of the subject is executed and by how many tests. To characterize infection, they
keep track of the bytecode of the original statement and the type of mutation
operator that is applied to it. Finally, for estimating propagation, the authors use
features of code complexity instead, reasoning that more complex code makes
an infection less likely to propagate.

When it comes to the choice of machine learning approach, the authors choose
the RandomForest [17] predictor, which we have already seen in Section 6.2.3.

The authors evaluate their approach on nine real-world Java subjects and across
multiple versions, amounting to 163 different configurations. They test their
predictor in a cross-version scenario, where it would be trained on previous
versions and applied on the recent one, and in a cross-project scenario, where
the predictor would be trained on one set of subjects and applied on another.

The authors find that their technique is both effective and efficient, reaching
speed-ups of up to two orders of magnitude compared to traditional mutation
testingwhile providing a reasonable trade-off in prediction accuracy. Further, the
authors note that features related to the execution criterion and those describing
the code of the tests contribute more to the predictions than other features.

Comparing predictive mutation testing to Codeine, we see that both approaches
have in common the aim to predict whether some part of the subject code will be
executed by given tests or inputs, respectively. However, only two of the fifteen
features the authors define relate to the tests themselves, while the majority
of features pertain to properties of the program. This allocation of features is
seemingly successful and thus presents an interesting opportunity to extend the
set of features considered by Codeine: Perhaps considering properties of the
programunder testwill help increase the accuracy, although it is not immediately
clear how such features can be used in our targeted generation use case.

Summarizing Related Work

As we can see in this chapter, our work does not stand alone in its field, but
rather it is surrounded and inspired by the work of others, and hopefully will
itself encourage further exciting research.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion
Over the course of this dissertation, we have seen several contributions being
made to the field of grammar-based fuzzing.

We have started modestly with the introduction of a very practice-oriented
notation for context-free grammars. This notation allows writing elegant short-
hands for repetitions of elements or embedding regular expressions, while not
imposing too many strict structural requirements that might be inconvenient
to uphold for a human writer. For example, the notation allows alternations
to be placed anywhere inside derivation rules, instead of having to scatter the
alternatives throughout multiple productions, which also makes such grammars
easier to read.

We have then turned this textual representation into a graph structure to be able
to better model the language it represents. This grammar graph has opened
the doors for the concept of 𝑘-paths, which provides a handy way to describe
certain contexts that can occur in inputs that belong to the language described
by the grammar.

This concept, in turn, enabled us to define a notion of grammar coverage known
as 𝑘-path coverage. Based on the grammar graph representation, this coverage
metric allows us to make judgements as to how varied both individual inputs
and entire input sets are.

Inspired by the promise of usefulness of the 𝑘-path coverage, we designed an
algorithm to constructively attain high coverage values. We successfully tested
the 𝑘-path algorithm in practice on a set of open-source subjects, where it has
shown very good results in its capacity as a fuzzer by holding its ground against
its closest competitor in the blackbox grammar-based fuzzing category. Beside
finding new bugs in our subjects, our fuzzer implementation called tribble
achieved impressive code coverage in our subjects.

Captivated by this success, we studied the effects that different levels of 𝑘-path
coverage have on inputs and, more specifically, the programs they are fed into.
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And so we have encountered empirical evidence of a connection between achiev-
ing 𝑘-path coverage and code coverage in our subjects. Specifically, this rela-
tionship appears to be a monotonic dependency, meaning that increasing the
grammar coverage leads to an increase in code coverage. Given that 𝑘-paths
tend to express distinct parts of the language, the existence of such a connection
to constructs in the code is not surprising.

Evolving this observation, we have leveraged the 𝑘-paths to learn associations
between inputs and code. Since we have originally developed the 𝑘-paths to
represent features of inputs, we soon arrived at using 𝑘-paths as features in the
machine learning interpretation of the word, which enabled us to use techniques
from the field of machine learning to derive such associations.

Having manifested these associations as predictors comes with the immediate
possibility to very efficiently predict the coverage of any given input. This is pos-
sible even without executing the program because all it takes is simply parsing
the input to determine the features it carries. This is immediately applicable for
the test selection use case, where we have to select from a large set of expensive
tests in a limited budget setting.

The choice of these predictors to be decision trees further allows us to interpret
their structure to learn exactly which features of the input are relevant to a
method of interest. Reading 𝑘-paths as grammar patterns makes the task of
understanding the purpose of amethodmuch easier. In addition, when software
evolves, we can use these features to easily spot any changes in the calling
conditions of a method of interest as an early warning system possibly indicating
an unintended change in behavior.

Finally, the decision trees enabled us to devise yet another algorithm for input
generation, which can quickly create complete, syntactically valid system inputs
that are aimed at executing a given method. This is useful in cases where test
execution is expensive, and the target method is under-tested, which, let’s face
it, happens all the time and all over the place.

To conclude, encouraged by the promising results of our experiments, we envi-
sion the concept of 𝑘-paths contributing to further research which will eventually
see wide adoption by practitioners.

7.2 Future Work
As stated at the very beginning of the introduction, fuzzing is not becoming
obsolete, nor does it stagnate. Having contributed to this field somewhat, there
are still several directions one can take going forward.

7.2.1 Addressing Limitations
The first area of improvement straightforwardly results from the fact that the
approaches presented here are subject to limitations. Some of these are funda-
mental, e.g., when training predictors, for instance, for our approach to work
well, we absolutely must rely on the training data because we simply cannot
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learn what we have not seen. However, some other limitations can be addressed
by further research and engineering.

When it comes to keeping the trainedmodels up-to-datewith changes in the code,
wemight need to (partially) re-train the predictors to reflect any differences such
as when a method changes behavior. Updating our models must be approached
with care to avoid performance issues because re-training from scratch is an
expensive operation that does not scale well. A clever policy to determine how
long to keep old data and when to deprecate it can have a significant impact
on both the execution time of the subjects and the re-training of the classifiers
themselves. Depending on the choice of the classifiers, an update from partial
new training data might be possible instead of a full re-training from scratch.

The issue of scaling can also be approached from another side. Features that
are represented by 𝑘-paths can be extracted from large inputs much faster by
deploying specialized parsers that can only recognize the part of the grammar
that is relevant for the features in question. The more 𝑘-paths are deemed to
not be relevant features for our predictors, the more production rules can these
specialized parsers ignore, and thus they gain a performance boost by having to
consider fewer derivations.

As mentioned previously in Section 5.2.5, there are issues with expressiveness.
Our choice of using 𝑘-paths as features was informed by the correlation between
input and code coverage that we have observed in Chapter 4, and it seems to
work well for us in practice. However, to enable the approach to learn more and
more precise associations, more types of features should be considered. Such
additional features can pertain to the inputs in different ways, such as expressing
constraints on the length of certain sub-strings, or interpreting elements numeri-
cally and constraining their values. Such constraints have already shown some
promise when implemented in the Alhazen tool with the aim to find precise
conditions for program crashes, so it is not too far fetched to expect them to
improve the accuracy of predictions of code locations as well.

Grammar ambiguity presents two challenges at once. Beside the performance
problem of parsing all possible derivation trees for an input, it forces us to also
consider all of them at the same time. However, this certainly results in an
over-approximation because any realistic subject will itself only ever consider
just one possible interpretation – the one determined by the implementation of
its input parser. And so, if our fuzzing use case warrants the commitment of
enough resources, we can consider re-using exactly the very same parser that
the subject itself uses to obtain a derivation tree that is guaranteed to be correct.
This should be especially feasible in cases, where the subject uses an automated
parser generator such as ANTLR.

7.2.2 Further Applications
The presented approaches can also be applied in more scenarios as is, which
would allow further investigation of the properties of 𝑘-paths.

The central concept that enables the very construction of 𝑘-paths is the grammar
graph, which, in turn, is produced from the textual representation of the given
grammar. Hence, the way the grammar is formulated has direct consequences
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for the structure of the grammar graph, which also influences the 𝑘-paths that can
be constructed. However, there are oftentimesmultiple ways to express the same
language construct by means of different notation. For example, in Section 2.2
we have seen different ways to express the repetition of an element: It can be
defined by using a quantification, a regular expression, or an alternation together
with recursion. In the latter case, there are even more options depending on
which alternatives are manifested as productions and which are left inline.

All these choices impact the nodes of the grammar graph and thus also the
𝑘-paths that are available. Our very own 𝑘-path algorithm is highly and strictly
dependent onwhich 𝑘-paths are there to be covered. Therefore, the differences in
the 𝑘-paths between otherwise equivalent grammarsmight lead to the generation
of different inputs that might have differing effects on the program under test.
Regardless of the 𝑘-paths, similar effects might also occur for other grammar-
based fuzzers, whose performance might be impacted by the grammar form.
It might be worthwhile to obtain and systematize the knowledge about the
influence of different grammar constructs on fuzzer performance.

Beside language-preserving grammar changes, one might consider grammar
mutations that may change the input format it describes. Any effects such
transformations might have on the inputs generated by the 𝑘-path algorithm are
not yet researched.

So far, we have considered and evaluated the 𝑘-path algorithm as a full-fledged
fuzzer on its own. However, we might want to consider it as a first stage of
generating seed inputs for other fuzzers instead. One could easily imagine
applying mutational and search-based techniques to the features-rich input sets
that are produced by the 𝑘-path algorithm. A similar setup was successfully
employed by Wang, Chen, Wei, and Liu [130] for their Skyfire generator.

We have seen in Section 5.1.2 how we can interpret 𝑘-paths as human-readable
grammar patterns, but we did not have a chance to investigate whether our
perceived usefulness matches reality. This presents an opportunity for a user
study. We could find out whether real developers would appreciate this way of
presenting information about relevant parts of inputs, and how it can help with
debugging and testing tasks if at all.

As we have seen from our own experiments, there are situations where multiple
programs share the same language of inputs. This offers opportunities to study
transfer of knowledge. For example, it might be feasible to take a highly relevant
pattern learned from one subject andmeasure whether it is as relevant to another
subject, thus possibly indicating different or even erroneous handling of certain
types of inputs.

Taking this one step further, this might enable clone detection on a semantic
level. For example, we might be able to detect that in one subject the method
foo depends on some feature, while in another subject it is methods bar and
baz that together share this association. This might indicate that these methods
are clones of each other, where the functionality of foo is spread across two
methods in the other subject.
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7.2.3 Extending Approaches
Finally, all approaches presented here can be extended, improved, or modified
in many ways.

The 𝑘-paths, which are the main focus of this work, consider only the derivation
context of grammar nodes, but not their surroundings. Pursuing the idea of
designing features of inputs that are as expressive as possible, one could envision
a sibling-based coverage, something like an 𝑠-path. When generating inputs that
are supposed to achieve 𝑠-path coverage caremust be taken to avoid the explosion
problem, as this seems to get dangerously close to combinatorial exploration [73].
Building on this idea, there might be a way to elegantly combine 𝑘-path and
𝑠-path information in a generic notion of input context.

In many realistic cases, context-free grammars are insufficient to describe the full
constraints of the language of expected inputs. And so, we might need to refer to
more powerful formalisms such as attribute grammars that allow us to express
almost limitless syntactic and semantic. However, together with their flexibility,
attribute grammars bring challenges such as how to reason about attributes
in terms of grammar coverage and how to achieve such coverage efficiently,
without running into SAT-solving performance bottlenecks.

In our work, we have limited ourselves to using derivation trees as predictors
due to their simplicity and easily accessible and interpretable structure. Yet
there might be classifiers that are more efficient, less demanding of training data,
or possibly better suited for selecting the most relevant features. Perhaps there
are approaches that would enable automatic feature extraction based on raw
derivation trees.

Other classifiers might support scalable multi-class prediction enabling us to
model all code locations at once, thus helping with scaling the approach. How-
ever, in such cases it is unclear how to deal with targeted generation or updating
parts of the model.

Currently, we only consider the initial training data when training predictors.
While their quality is adequate for the subjects and methods we have seen in
our experimental evaluation, we might want to consider including a feedback-
loop, which automatically learns, tests, refines, and improves the predictors.
While this design has shown promise in the Alhazen tool, we might run into
performance problems if we apply the same setup to our scenario unchanged
and try to optimize all predictors at once.

In Conclusion

Already over the course of this dissertation, 𝑘-paths have proven a useful in-
strument in several software engineering tasks, such as assessing the potential
diversity of inputs enabled by a given grammar, generating diverse but small
test input sets, as well as both predicting and achieving targeted code coverage.
Looking into the future, only time will tell the extent to which 𝑘-paths will
ultimately find their place in the practice of software engineering.
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Appendix A

Supplementary Data

This appendix features the coverage data for all subjects used in the experimental
evaluation from Chapter 4. Figure A.1 displays scatter plots of their branch and
𝑘-path coverage values. Please note that the y-scale is not normalized across the
individual sub-figures.

99



100 APPENDIX A. SUPPLEMENTARY DATA

0 0.2 0.4 0.6 0.8 1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

k-path

1-path

2-path

3-path

4-path

5-path

k-path coverage

br
an

ch
 c

ov
er

ag
e

a / argo.

0 0.2 0.4 0.6 0.8 1

0.01

0.015

0.02

0.025

0.03

0.035

k-path

1-path

2-path

3-path

4-path

5-path

k-path coverage

br
an

ch
 c

ov
er

ag
e

b / fastjson.

0 0.2 0.4 0.6 0.8 1

0.04

0.05

0.06

0.07

0.08

0.09

k-path

1-path

2-path

3-path

4-path

5-path

k-path coverage

br
an

ch
 c

ov
er

ag
e

c / genson.

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

k-path

1-path

2-path

3-path

4-path

5-path

k-path coverage

br
an

ch
 c

ov
er

ag
e

d / gson.

0 0.2 0.4 0.6 0.8 1

0.04

0.05

0.06

0.07

0.08

k-path

1-path

2-path

3-path

4-path

5-path

k-path coverage

br
an

ch
 c

ov
er

ag
e

e / jackson-databind.

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k-path

1-path

2-path

3-path

4-path

5-path

k-path coverage

br
an

ch
 c

ov
er

ag
e

f / json-flattener.

0 0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

k-path

1-path

2-path

3-path

4-path

5-path

k-path coverage

br
an

ch
 c

ov
er

ag
e

g / json-java.

0 0.2 0.4 0.6 0.8 1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

k-path

1-path

2-path

3-path

4-path

5-path

k-path coverage

br
an

ch
 c

ov
er

ag
e

h / json-simple.

Figure A.1 / Branch and 𝑘-path coverage measured for subjects from Table 4.2.
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Branch and 𝑘-path coverage measured for subjects from Table 4.2 (continued).
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Branch and 𝑘-path coverage measured for subjects from Table 4.2 (continued).



Appendix B

Extra Printables

This appendix contains the JavaScript grammar excerpt and its graph to be
printed out separately or torn off, so that they can be placed alongside the main
text for easy reference.
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Expr := AddExpr0;
AddExpr := MultExpr2

| AddExpr5 ("+"10 | "-"11) MultExpr7;
MultExpr := UnaryExpr8

| MultExpr13 ("*"23 | "/"24 | "%"25) UnaryExpr15;
UnaryExpr := Identifier16

| "+"27 UnaryExpr28
| "-"29 UnaryExpr30
| "++"31 UnaryExpr32
| "--"33 UnaryExpr34
| "("35 AddExpr36 ")"37
| DecDigits22;

DecDigits := DecDigit42
+;

DecDigit := "0"44 | "1"45 | "2"46 | "3"47 | "4"48
| "5"49 | "6"50 | "7"51 | "8"52 | "9"53;

Identifier := "x"39 | "y"40 | "z"41;

Figure 1.1 / Grammar for a subset of arithmetic expressions in the
JavaScript programming language (excerpt). Enriched with numeric
node identifiers from the corresponding grammar graph.
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AddExpr0

|

MultExpr2

|

UnaryExpr8

|

Identifier16

|

"x"39 "y"40 "z"41

∼

"+"27 UnaryExpr28

… DecDigits22

+

DecDigit42

|

"0"44 "1"45 "2"46 "3"47 "4"48 "5"49 "6"50 "7"51 "8"52 "9"53

∼

MultExpr13 |

"*"23 "/"24 "%"25

UnaryExpr15

∼

AddExpr5 |

"+"10 "-"11

MultExpr7

Figure 2.2 /An excerpt from the graph representation of the (partial) grammar from Figure 1.1. The
root node is AddExpr0 because it is the right-hand side of the production of the start non-terminal
Expr. The “backward” dashed lines indicate derivations of references that prevent the graph
from being a tree or even a DAG. Numeric identifiers are only shown for symbolic nodes.
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